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assumptions = how does N scale with the system size n?

Gaussian
H = L*(R")
not Gaussian
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General setting

Tr[Ep‘X’N] <0

p&N no
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The simple case of identity testing

yes/no

L. Paninski. IEEE Tr. Inf. Th. 54 (10), 4750-4755,
G&P. Valiant, FOCS, 2014,
C. Canonne, Found. Trends Commun. Inf. Theory, Vol. 19 No. 6 pp. 1032-1198



Property testing

The simple case of identity testing

yes/no

L. Paninski. IEEE Tr. Inf. Th. 54 (10), 4750-4755,
G&P. Valiant, FOCS, 2014,
C. Canonne, Found. Trends Commun. Inf. Theory, Vol. 19 No. 6 pp. 1032-1198



Property testing

The simple case of identity testing
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Property testing

The simple case of identity testing

finite dimensional

l
A o

Question: are we observing o

or any other p such that EH'D — ol =2 €?

yes/no

R. O’Donnell & J. Wright, Quantum Spectrum Testing, arXiv:1501.05028
R. O’Donnell & C. Wadhwa, Instance-Optimal Quantum State Certification with Entangled Measurements, arXiv:2507.06010



Gaussian states

Definition

Hilbert space: 7, = L*(R"), where n is the number of modes (system size).
Quadrature operator vector: R = (X15 P15 ves Xy Dy) -
Mean and covariance of a state: m(p) := Tr[Rp],

V(p) := Tr[{R — m(p), R — m(p))T}p] .
Energy of a state:

Gaussian state: p = D_ U
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Gaussian states

Definition

A dangerously oversimplified analogy

(with many caveats under the carpet)

probability distributions on an infinite set probability distributions on [d] with d = o
continuous-variable (CV) systems qudits with d = + oo

Gaussian states quantum generalisation of Gaussian distributions

Given a CV state, we can define its energy, its mean vector and its covariance matrix.
A Gaussian state is fully characterised by its mean vector and its covariance matrix.

\ 7 /



Gaussian property testing

Tolerant testing

0




Gaussian property testing

Tolerant testing

“yes” probability
Ir [Tp QN ]




Approach

Study the properties of the subset to be tested (Ssymmetries, characterisation)
Choose the notion of distance: trace distance (but also relative entropy of non-Gaussianity)
Technical tools: trace distance bounds

Distinguish two regimes: testing “pure Gaussianity” and “mixed Gaussianity”



Pure Gaussian states

Definition of the problem

Let) < e, <éep,let0 <0< 1andlet
* G be the set of pure Gaussian states with mean energy per mode at most E.

We say that an algorithm solves the property testing problem using N samples if, for any
generic state p such that

A. either pis g -close to &, i.e. 'mm —|lp — 1//”1 < 8A
I/JE?E 2 -

B. orpisegfarfrom ¥,  ie. min—|p — l//H1 > EB
l//EfﬁE 2

the algorithm can identify the underlying hypothesm A or B with failure probability at most 6.



Two approaches
symmetries — T

of Gaussian states

Example. Let f € C*(R) such that U, JQf U;L/ , =J®f |, namely

1(55)(55) =@ Vxyer

Then
logf( ) + 10gf<

= 00 10gf<)C a

1) = log f(x) + log f(y

991 (x‘y
Oy log f 7

2

) => dtz log f(t) =const. = | f isGaussian.

See, e.g., E.H. Lieb, Gaussian kernels have only Gaussian maximizers. Invent Math 102, 179—208 (1990).



Two approaches
symmetries / \

of Gaussian states

Proposition. Let U, be the rotation

(Uy f)(X,y) = f(cosO@x +sinfy, —sinf x + cos Fy) Ve LA (R™) ~ ?/,‘?2.
For a pure state yon & ,, the following properties are equivalent:
1. Uy |y)®* = |y)® forall @ € [0,27);
2. Uy w)®? = |w)®?is a product state for some @ which is not a multiple of 7/2;

3. |y) is a pure Gaussian state with zero mean.

S. C. Springer & al. PRA 79, 062303 (2000)
J. Cuesta, J. Math. Phys. 61, 022201 (2020)



Two approaches
symmetries / \

of Gaussian states

Theorem. Take two copies of a quantum Implementation. dim, =

state p and measures whether p® is in the [ a7 EEE QFT-! —[ A
rotation-invariant subspace. Then,
P
— — . 1
N = O(e 210g(5 H) £ 1= Q( min <e§, n4E4> — €A> u§/4

copies of p are sufficient to test its closeness
to the set of zero-mean pure Gaussian states.

Generalisations. Non-zero mean, smaller auxiliary systems, testing the generator of
rotations (G?) 82



Two approaches
— T learning

Gaussian states

Idea. p is a pure Gaussian state iff its symplectic eigenvalues {v;} are all equal to 1.

Sketch of the algorithm. V'=5D5

()

For the fermonic case,
see Bittel & al., PRX Quantum 6, 030341 (2025)
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Learning the covariance matrix

Lemma 41 (Sample complexity of estimating the covariance matrix). Let ¢,6 € (0,1) and E > 0. Let p be an n-mode

quantum state satisfying with second moment of the energy upper bounded by nE, i.e. \/ Tr [E 2 p] < nE. Then, a number

- 2(2n% + 3n)\ 200(8n°E* +3n) | n*\ n3E?
(n +3)[68 log( S ) = = 0O|log 5| 2 | (C30)
of copies of p are sufficient to build a vector fa € R*" and a symmetric matrix V' € R?"2" such that
~ ~ €
Pr(|[V' = V(p)llo<e and V' +iQ>0 and |m—-—m(p)| < ) >1-96. C31
( p Pl =~ (C31)

Such procedure only requires single-copy measurements.

F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone, S. F. E. Oliviero,
Learning quantum states of continuous variable systems, Nature Physics 21, 2002-2008 (2025)



Trace distance bounds

Lemma 10 (Upper bound on the trace distance between Gaussian states [4]). The trace distance between two Gaussian
states p(V, m) and p(W, t) can be upper bounded as follows:

1 1+V3 min(||V oo, [[W]]oo
o, m) - p¥, 0l < 2 mancrey, Tew) v - Wil + IV W)y a)

Lemma 11 (Upper bound on the trace distance between an arbitrary state and a pure Gaussian state [3]). Let g be a
pure Gaussian state with covariance matrix V and first moment m. Moreover, let o be a (possibly non-Gaussian and possibly
mixed) state with covariance matrix W and first moment t. Then, it holds that

1
SG = ol < VEVIIV = Wlleo + 2llm — t]2, (A20)

where E := max(Tr[oE], Tr[L/)GE |) is the maximum energy and E denotes the energy operator.

L. Bittel, F. A. Mele, A. A. Mele, S. Tirone, L. Lami
Optimal estimates of trace distance between bosonic Gaussian states and applications to learning, Quantum 9, 1769 (2025)

F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone, S. F. E. Oliviero,
Learning quantum states of continuous variable systems, Nature Physics 21, 2002-2008 (2025)



Trace distance bounds

Lemma 12 (Lower bound on the trace distance between Gaussian states [3]). The trace distance between two Gaussian
states p(V,m) and p(W,t) can be lower bounded in terms of the norm distance between their first moments and the norm

distance between their covariance matrices as

1 (

[m —

\

1 .
llp(V,m) = p(W, Bl > oo min{ 1

2000 | VAmin(|V]leo, [[W]leo) +1 |

1 (

|V - W2

1 .
~Ip(V, m) = p(W, B > o= min{ 1

200 |7 4min([|[V]leo, [[Wlleo) + 1

|

(A21)

Lemma 13 (Lower bound on the trace distance between arbitrary states [18]). Let p be a (possibly non-Gaussian) state
with first moment m and covariance matrix V. Moreover, let o be a (possibly non-Gaussian) state with first moment t and

covariance matrix W. The trace distance can be lower bounded as

1 jm — t||2

i”P — G“l 2 . R ’
32max(Tr[Ep ,Tr[Ea])

1 IV - WIS

Sllp —olli = - —,

2 3098 max(Tr[E?p], Tr[E?0])

where E denotes the energy operator.

F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone, S. F. E. Oliviero,
Learning quantum states of continuous variable systems, Nature Physics 21, 2002-2008 (2025)

F. A. Mele, S. F. E. Oliviero, V. Upreti, U. Chabaud

The symplectic rank of non-Gaussian quantum states, arXiv:2504.19319 [quant-ph]

(A22)

(A23)



Perturbation bounds

Lemma 36 (Perturbation on symplectic diagonalisation [71]). Let Vi,V € R#™*%" be two covariance matrices with
symplectic diagonalisations V1 = 51D S'lr and Vo, = S;D,S., where the elements on the diagonal of D1 and D, are arranged in

descending order. Then

|ID1 — D2l < \/K(Vl)K(VZ) Vi — Wl ,

(C5)
D1 — Dy|l2 < VK(V)KVR)||[V1 = Valla,

where K(V) is the condition number of the covariance matrix V, defined as K(V') := ||V||oo| |V ™| co-

M. Idel, D. Lercher, M. M. Wolf, An operational measure for squeezing, J. Phys. A: Math. Theor. 49 445304 (2016)



Recap
p®N > m 1% Umax VS Vithr

Perturbation on symplectic diagonalisation.

Learning mean and covariance.

N _ 0 1 n2 n3E2
B 0g< 0 ) g 1Dy = Dyl < \/K(Vl)K(V2)||V1 — Wl
P <||V'— Vip)ll, <&, V+iQ >0, |l —m(p)| < — > >1-0 Dy — Dsl, < \/K(Vl)K(V2)||V1 - Wll,
10/ 8nE
Upper bound between Gaussian states. Upper bound between a pure Gaussian state and a generic state.
1 1 ++/3 1 2
Sllpvom) = p(W. ), < S\F max(TrV, TrW) ||V = W], w6 =0l < VE\IV = Wil +2lim — t|
min(|| V| o, W1l &)
+\/ lm — ¢|
2
Lower bound between Gaussian states. Lower bound between arbitrary states.
1 1. lm — ¢t 1 lm —¢]”
—llp(V,m) — p(W,t)||; > — min< 1, —|lp—oll; 2 N 5
2 e ) =PV Ol 200 { VAmin([[ V], [[Wlleo) + 1 } 2 32max(Tr[Ep],TrEa])

IV =W, } 1 IV — w2,

> A min(|| V| o | Wil o) + 1 ~llp =l 2

1 1
—llp(V,m) — p(W, t Z—min{l
2 It ) = s 200 2 3098 max(Tr[£2p], Tr[E26])
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QXN
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m,V = SDST
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1_

and covariance V = SST
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QN

|

m,V = SDST

1_

P

pure Gaussian state with mean m
and covariance V = S§ST

- tyt

o=l £ 1 - Telpy]

= 1= Tr{U!D},  pDyp)Us 10XOI]

= Tr[UD . oD,y Us N]
= A LY s Y ()P m(p)HS

(i) 1
12

L B
1—10)0] < N ‘ﬁ\;(w 1.

VTr[D — 1]

v

1 1 -
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Two approaches
— T learning

Gaussian states

Mele & al. Nature Physics 21, 2002-2008 (2025) min —||p — y|

. . yey 2
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P V max ure
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l 1 n

. - - min —|lp —yll; < — ;= 1),
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and covariance V = SST
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Two approaches
— T learning

Gaussian states

Theorem. Let 0 < ¢, < e¢gand o € (0,1). Let p be a possibly mixed state satisfying the energy

~ C
bound \/ Tr[E%p] < nE. Ifn := eg — 5n8E68A > (), then single-copy measurements on

71176
N=0 (log <ﬁ> n ]j ) = O(poly(n, E)) Q

0) 1

copies of p suffice to decide whether p is €,-close or g5-far from &, with success probability at
least 1 — 0.
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Theorem. Let 0 < ¢, < e¢gand o € (0,1). Let p be a possibly mixed state satisfying the energy

~ C
bound \/ Tr[E°p] < nE. If g :=el§l — 5n8E68A > (] then single-copy measurements on
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Mixed Gaussian states

Definition of the problem

Let) < e, <éep,let0 <0< 1andlet
. ?gi"ed be the set of mixed Gaussian states with mean energy per mode at most E.

We say that an algorithm solves the property testing problem using /N samples if, for any
generic state p such that

1 | . |
A. either p is €4-close to ?}f}lxed, i.e. ni;m dEH p—oll; £ &y P

ie. min —|lp—oll, > 5|

B. or pis eg-far from &1xed
B E W xed
cegmixed )

the algorithm can identify the underlying hypothesis A or B with failure probability at most o.
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Property testing

The simple case of identity testing

’ /8' ¥
‘e IEREEE, N 1.1. d

Question: are we observing ¢
no

or any other p such that —||p — ¢g||, = €?
yves/no 2

yes yes/no

1

e g Yo s s e P N SR A BT SRR
i
¥
b 4
B 1
[
{5
J

,’ N — Q(
L. Paninski. IEEE Tr. Inf. Th. 54 (10), 4750-4755 ,
G&P. Valiant, FOCS, 2014,
C. Canonne, Found. Trends Commun. Inf. Theory, Vol. 19 No. 6 pp. 1032-1198




A family of distributions

Proposition. (Classical identity testing) Let g be a probability distribution over 2 with ||g||,, < 1/2 and
let ¢ € (0,1). Then there is a tamily &, of probability distributions on 2 with the following properties:

. ifp € F__, thenthereexistsz € {—1, 4+ 1} such that

q,€’

(i) = (1 +4ez)q@i) e o

2]69[(1 + 4€Zj) Q(])

. EHp—qu > eforanyp € F_ ;

» testing whether a distribution p is g or belongs to &, with failure probability smaller than 1/3

q

requires at least £2 ( ) samples of p.

e*llqll
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Outlook

Results.

* two protocols to test “pure Gaussianity” (symmetry, learning) with a polynomial number of copies of p
with respect to the system size n and with local (or even single copy) measurements;

* hardness of testing “mixed Gaussianity” , even when having access to a quantum memory.
Open questions.
* optimal sample complexity?

* hardness even in the case €5 constant.

(This is the case for relative entropy min D(p||o). )
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