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Property testing
The simple case of identity testing

σ
ρ⊗N?

yes/no

ε

R. O’Donnell & J. Wright, Quantum Spectrum Testing, arXiv:1501.05028

R. O’Donnell & C. Wadhwa, Instance-Optimal Quantum State Certification with Entangled Measurements, arXiv:2507.06010

Question: are we observing 


or any other  such that  ?

σ

ρ
1
2

∥ρ − σ∥1 ≥ ε

finite dimensional



Gaussian states

Hilbert space: , where  is the number of modes (system size).


Quadrature operator vector: 


Mean and covariance of a state:  


Energy of a state: 


Gaussian state: 

ℋn = L2(ℝn) n

R̂ = ( ̂x1, ̂p1, …, ̂xn, ̂pn) .

ρ = DmUS

m

⨂
j=1

e−ξja
†
j aj

Tr e−ξja
†
j aj

, U†
S D†

m

Definition


m(ρ) := Tr[R̂ρ] ,

V(ρ) := Tr[{R̂ − m(ρ), (R̂ − m(ρ))⊺}ρ] .
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m(ρ) := Tr[R̂ρ] ,
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A dangerously oversimplified analogy

probability distributions on an infinite set


continuous-variable (CV) systems


Gaussian states


probability distributions on  with  


qudits with  


quantum generalisation of Gaussian distributions

[d] d → ∞

d = + ∞

Given a CV state, we can define its energy, its mean vector and its covariance matrix.

A Gaussian state is fully characterised by its mean vector and its covariance matrix.

(with many caveats under the carpet)
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“yes” probability


Tr[Tρ⊗N]

1 − δ

δ
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Approach

• Study the properties of the subset to be tested (symmetries, characterisation)


• Choose the notion of distance: trace distance (but also relative entropy of non-Gaussianity)


• Technical tools: trace distance bounds


• Distinguish two regimes: testing “pure Gaussianity” and “mixed Gaussianity”



Pure Gaussian states

Let  , let  and let


•  be the set of pure Gaussian states with mean energy per mode at most . 


We say that an algorithm solves the property testing problem using  samples if, for any 
generic state  such that


A. either  is -close to , i.e. 


B. or  is -far from ,        i.e.   ,


the algorithm can identify the underlying hypothesis A or B with failure probability at most .

0 ≤ εA < εB 0 < δ ≤ 1

𝒢E E

N
ρ

ρ εA 𝒢E min
ψ∈𝒢E

1
2

∥ρ − ψ∥1 ≤ εA

ρ εB 𝒢E min
ψ∈𝒢E

1
2

∥ρ − ψ∥1 > εB

δ

Definition of the problem

P

P



Two approaches
symmetries


of Gaussian states
learning


Gaussian states

Example. Let  such that    , namely





Then





.


f ∈ C2(ℝ) Uπ/4 f ⊗ f U†
π/4 = f ⊗ f

f ( x + y

2 ) f ( x − y

2 ) = f(x) f(y) ∀ x, y ∈ ℝ

log f ( x + y

2 ) + log f ( x − y

2 ) = log f(x) + log f(y)

⇒ ∂x∂y log f ( x + y

2 ) = − ∂x∂y log f ( x − y

2 ) ⇒ d2

dt2 log f(t) = const . ⇒ f  is Gaussian

See, e.g., E.H. Lieb, Gaussian kernels have only Gaussian maximizers. Invent Math 102, 179–208 (1990).



Two approaches
symmetries


of Gaussian states
learning


Gaussian states

Proposition.  Let  be the rotation





For a pure state  on , the following properties are equivalent: 


1.   for all ; 


2.  is a product state for some  which is not a multiple of ;


3.  is a pure Gaussian state with zero mean.

Uθ

(Uθ f )(x, y) = f(cos θ x + sin θ y, − sin θ x + cos θ y) ∀ f ∈ L2(ℝ2n) ≅ ℋ⊗2
n .

ψ ℋn

Uθ |ψ⟩⊗2 = |ψ⟩⊗2 θ ∈ [0,2π)

Uθ |ψ⟩⊗2 = |ψ⟩⊗2 θ π/2

|ψ⟩
S. C. Springer & al. PRA 79, 062303 (2009)

J. Cuesta, J. Math. Phys. 61, 022201 (2020)
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Theorem. Take two copies of a quantum 
state  and measures whether  is in the 
rotation-invariant subspace. Then,





copies of  are sufficient to test its closeness 
to the set of zero-mean pure Gaussian states.


ρ ρ⊗2

N = O(ε−2 log(δ−1)) ε := Ω( min (ε2
B, 1

n4E4 ) − εA)
ρ

Implementation.

Generalisations.  Non-zero mean, smaller auxiliary systems, testing the generator of 
rotations .⟨G2⟩ρ⊗2

dimℋA = 8
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Idea.  is a pure Gaussian state iff its symplectic eigenvalues  are all equal to .


Sketch of the algorithm.
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Learning the covariance matrix

F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone, S. F. E. Oliviero, 

Learning quantum states of continuous variable systems, Nature Physics 21, 2002-2008 (2025)



Trace distance bounds

F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone, S. F. E. Oliviero, 

Learning quantum states of continuous variable systems, Nature Physics 21, 2002-2008 (2025)

L. Bittel, F. A. Mele, A. A. Mele, S. Tirone, L. Lami 
Optimal estimates of trace distance between bosonic Gaussian states and applications to learning, Quantum 9, 1769 (2025)



Trace distance bounds

F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti, L. Lami, L. Leone, S. F. E. Oliviero, 

Learning quantum states of continuous variable systems, Nature Physics 21, 2002-2008 (2025)

F. A. Mele, S. F. E. Oliviero, V. Upreti, U. Chabaud 
The symplectic rank of non-Gaussian quantum states, arXiv:2504.19319 [quant-ph]



Perturbation bounds

M. Idel, D. Lercher, M. M. Wolf, An operational measure for squeezing, J. Phys. A: Math. Theor. 49 445304 (2016)



Recap

Learning mean and covariance.



N = O(log( n2

δ ) n3E2

ε2 )
ℙ (∥Ṽ′￼− V(ρ)∥2 ≤ ε, Ṽ′￼+ iΩ ≥ 0, ∥m̃ − m(ρ)∥ ≤ ε

10 8nE ) ≥ 1 − δ

ρ⊗N Ṽ ν̃max νthrvs

Upper bound between Gaussian states.





                                                         

1
2

∥ρ(V, m) − ρ(W, t)∥1 ≤
1 + 3

8
max(TrV, TrW ) ∥V − W∥∞

+
min(∥V∥∞,∥W∥∞)

2
∥m − t∥

Upper bound between a pure Gaussian state and a generic state.


1
2

∥ψG − σ∥1 ≤ E ∥V − W∥∞ + 2∥m − t∥2

Lower bound between Gaussian states.




1
2

∥ρ(V, m) − ρ(W, t)∥1 ≥
1

200
min {1, ∥m − t∥

4 min(∥V∥∞,∥W∥∞) + 1 }
1
2

∥ρ(V, m) − ρ(W, t)∥1 ≥
1

200
min{1, ∥V − W∥2

4 min(∥V∥∞,∥W∥∞) + 1 }

Lower bound between arbitrary states.




1
2

∥ρ − σ∥1 ≥ ∥m − t∥2

32 max(Tr[ ̂Eρ], Tr ̂Eσ])
1
2

∥ρ − σ∥1 ≥ ∥V − W∥2
∞

3098 max(Tr[ ̂E2ρ], Tr[ ̂E2σ])

Perturbation on symplectic diagonalisation.





  

∥D1 − D2∥∞ ≤ K(V1)K(V2)∥V1 − V2∥∞

∥D1 − D2∥2 ≤ K(V1)K(V2)∥V1 − V2∥2
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1
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ψ
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min
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1
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1

2

n

∑
i=1

(νi − 1) ,

 

ψ̄ = Dm(ρ)US |0⟩⟨0 |U†

S D†
m(ρ)

𝕀 − |0⟩⟨0 | ≤ N̂
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ρ⊗N Ṽ ν̃max

Mele & al.  Nature Physics 21, 2002-2008 (2025)
This procedure only requires single-copy measurements.
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N = O(log( n2

δ ) n3E2

ε2
V )m, V = SDS⊺

ψ̄ pure Gaussian state with mean 

and covariance 

m
V̄ = SS⊺

∥V − Ṽ∥2 ≤ εV

min
ψ∈𝒢

1
2

∥ρ − ψ∥1

pure

Gaussian


states

ψ

ρ

ρ̃ state with mean 

and covariance 

m
Ṽ

ψ̄

min
ψ∈𝒢E

1
2

∥ρ − ψ∥1 ≤
1

2

n

∑
i=1

(νi − 1) ,

ρ̃
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∥ρ − σ∥1 ≥ ∥V − W∥2
∞
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Ṽ

ψ̄

min
ψ∈𝒢E

1
2

∥ρ − ψ∥1 ≤
1

2
n(max

i
ν̃i − 1) + n34E(4nE+εV)εV

ρ̃

Perturbation on symplectic diagonalisation.


                                                  ∥D1 − D2∥2 ≤ K(V1)K(V2)∥V1 − V2∥2



min
ψ∈𝒢E

1
2

∥ρ − ψ∥1 ≥
1

2c (nE)6 [(ν̃max − 1)2 − 8nE(4nE+εV)εV]

Two approaches
symmetries


of Gaussian states
learning


Gaussian states
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Ṽ

ψ̄

min
ψ∈𝒢E

1
2

∥ρ − ψ∥1 ≤
1

2
n(max

i
ν̃i − 1) + n34E(4nE+εV)εV

ρ̃



min
ψ∈𝒢E

1
2

∥ρ − ψ∥1 ≥
1

2c (nE)6 [(ν̃max − 1)2 − 8nE(4nE+εV)εV]

Two approaches
symmetries


of Gaussian states
learning


Gaussian states
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Theorem. Let  and . Let  be a possibly mixed state satisfying the energy 

bound .  If , then single-copy measurements on





copies of  suffice to decide whether  is -close or -far from  with success probability at 
least .

0 ≤ εA < εB δ ∈ (0,1) ρ

Tr[ ̂E2ρ] ≤ nE η := ε4
B −

c
2

n8E6εA > 0

N = O (log ( n
δ ) n7E6

η2 ) = O(poly(n, E))

ρ ρ εA εB 𝒢E
1 − δ



Two approaches
symmetries


of Gaussian states
learning


Gaussian states

Theorem. Let  and . Let  be a possibly mixed state satisfying the energy 

bound .  If , then single-copy measurements on





copies of  suffice to decide whether  is -close or -far from  with success probability at 
least .

0 ≤ εA < εB δ ∈ (0,1) ρ

Tr[ ̂E2ρ] ≤ nE η := ε4
B −

c
2

n8E6εA > 0

N = O (log ( n
δ ) n7E6

η2 ) = O(poly(n, E))

ρ ρ εA εB 𝒢E
1 − δ



Two approaches
symmetries


of Gaussian states
learning


Gaussian states

Theorem. Let  and . Let  be a possibly mixed state satisfying the energy 

bound .  If , then single-copy measurements on





copies of  suffice to decide whether  is -close or -far from  with success probability at 
least .

0 ≤ εA < εB δ ∈ (0,1) ρ

Tr[ ̂E2ρ] ≤ nE η := ε4
B −

c
2

n8E6εA > 0

N = O (log ( n
δ ) n7E6

η2 ) = O(poly(n, E))

ρ ρ εA εB 𝒢E
1 − δ



Two approaches
symmetries


of Gaussian states
learning


Gaussian states

Theorem. Let  and . Let  be a possibly mixed state satisfying the energy 

bound .  If , then single-copy measurements on





copies of  suffice to decide whether  is -close or -far from  with success probability at 
least .

0 ≤ εA < εB δ ∈ (0,1) ρ

Tr[ ̂E2ρ] ≤ nE η := ε4
B −

c
2

n8E6εA > 0

N = O (log ( n
δ ) n7E6

η2 ) = O(poly(n, E))

ρ ρ εA εB 𝒢E
1 − δ



5 minutes break



Mixed Gaussian states

Let  , let  and let


•  be the set of mixed Gaussian states with mean energy per mode at most . 


We say that an algorithm solves the property testing problem using  samples if, for any 
generic state  such that


A. either  is -close to ,  i.e. 


B. or  is -far from ,        i.e.    ,


the algorithm can identify the underlying hypothesis A or B with failure probability at most .
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Property testing
The simple case of identity testing

q
X1, …, XN i . i . d .?

yes/no

ε

yes
yes/no

no
Question: are we observing 


or any other  such that  ?

q

p
1
2

∥p − q∥1 ≥ ε

L. Paninski. IEEE Tr. Inf. Th. 54 (10), 4750-4755 , 

G&P. Valiant, FOCS, 2014, 

C. Canonne, Found. Trends Commun. Inf. Theory, Vol. 19 No. 6 pp. 1032–1198

    N = Ω( 1
ε2∥q∥2 ) (∥q∥∞ ≤ 1

2 )

p



A family of distributions

Proposition. (Classical identity testing) Let  be a probability distribution over  with  and 
let . Then there is a family  of probability distributions on  with the following properties:


• if , then there exists  such that  
 

                    


•  for any  ;


• testing whether a distribution  is  or belongs to  with failure probability smaller than  
requires at least  samples of .

q 𝒳 ∥q∥∞ ≤ 1/2
ε ∈ (0,1) ℱq,ε 𝒳

p ∈ ℱq,ε z ∈ {−1, + 1}𝒳

p(i) =
(1 + 4ε zi) q(i)

∑j∈𝒳 (1 + 4ε zj) q( j)
i ∈ 𝒳

1
2

∥p − q∥1 > ε p ∈ ℱq,ε

p q ℱq,ε 1/3
Ω ( 1

ε2∥q∥2 ) p
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q

∥p − q∥1 = ∥ρ(p) − ρ(q)∥1 > 0



Step 1: testing the covariance matrix

Tr[ρ(q) ̂E2] ≤ n2E2

Tr[ρ(p) ̂E2] ≤ n2E2

1
2

∥ρ(p) − ρ(q)∥1 > ε

X1

XN

ρ(p)⊗Ntot⋮

ρ(p) := ∑
k∈ℕn

p(k) |k⟩⟨k |

q ?
ε

p

ρ(p)⊗Ncov Ṽ(p)
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Outlook
Results.


• two protocols to test “pure Gaussianity” (symmetry, learning) with a polynomial number of copies of  
with respect to the system size  and with local (or even single copy) measurements;


• hardness of testing “mixed Gaussianity” , even when having access to a quantum memory.


Open questions.


• optimal sample complexity?


• hardness even in the case  constant. 
 

This is the case for relative entropy . 


ρ
n

εB

( min
σ∈𝒢mixed

E

D(ρ∥σ) )


