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Learning the Hamiltonian of Gaussian states

e Learn Hamiltonian 7 of a CV system of m modes
from N copies of Gibbs state p = %

e Access to thermal equilibrium states encoding
dynamics

e In many-body physics interactions are local:
interaction graph G = ([m],E) of degree A — 1

e Mixed Gaussian states are Gibbs states of quadratic
Hamiltonian in R = (X, P,,...., X,,,, P,,),
2m
BH = Z (Ri - ti)Hij<Rj - tj)
Q=1

— learn Hamiltonian matrix H
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Background: Hamiltonian learning from Gibbs states

Qudit systems:
e Recent work on computational and sample efficient algorithms for known graphs,
but no efficient graph learning algorithm?234°.

o N > poly(m,e 2" copies and NOW) time suffice*

(poly(B

e O(logm) in general and O( e logmpoly(log )) for lattices®

Classical Random Markov fields/Gaussian Graphical Models:
O(logm) for both Hamiltonian and graph learning

LAnshu, Arunachalam, Kuwahara, Soleimanifar 2021
2Haah, Kothari, Tang 2021

3Rouzé, Stilck Franca, Onorati, Watson 2024
4Bakshi, Liu, Moitra, Tang 2024

5Chen, Anshu, Nguyen 2025
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Learning with continuous variable systems

Systems with quadratic CV Hamiltonians:
e Electromagnetic fields (free space, fibre, cavity)
e Optomechanical systems
e Trapped ions (vibrational degrees of freedom)

e Cold atoms in optical lattices

...and analog simulators of lattice bosonic Hamiltonians
e Periwal et al. 2021: 18 sites, 10* Rubidium atoms/site, magnetization field
e Youssefi et al. 2022: 10 sites of a superconducting optomechanical systems

e Senanian et al. 2023: Photonic synthetic lattices with up to 10° sites
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Learning with continuous variable systems

Rapidly developing fields about finite sample size guarantees:
e Trace distance learning®
e Gaussian trace distance bounds’ 8 °
e Gaussian testing®®
e Gaussian unitary learning!?

e Hamiltonian learning from time evolution'? 3

5Mele, Mele, Bittel, Eisert, Giovannetti, Lami, Leone, Oliviero 2024
"Bittel, Mele, Mele, Tirone, Lami 2024
8Bittel, Mele, Eisert, Mele 2025
9Holevo 2024a,2024b
0Girardi, Witteveen, Mele, Bittel, Oliviero, Gross, Walter, 2025
HFanizza, lyer, Lee, Mele, Mele, 2025
2Lj, Tong, Gefen, Ni, Ying 2024
3Mébus, Bluhm, Caro, Werner, Rouzé 2023
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Our contributions

We establish the following:

e Sample optimal scaling in Task Sample compl.
precision for trace distance

Trace di ™ Jog( %
o Efficient Gaussian Hamiltonian race distance 0 ( e 0g( 9 ))

learning (known graph)

Hamiltonian | O (log (%) =) Vy >0

e Efficient graph learning

(threshold k) (lattices) O (log (5) Zpoly(log ¢))

Graph O(log (%) =) Vv >0

Non-entangled (heterodyne) measurements and classical post-processing, requiring
O(poly(mN)) time for Hamiltonian learning.
Implicit dependence on |H| ., (equivalent to SA) and |H |, see paper.
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Classical vs Quantum Gaussian Hamiltonian learning

Classical Gaussian distributions

° P(:L') ~ e—(a:—tf@(:z:—t)
b Eij = E[(z; — ti)(‘rj - tj)]

e 0 =(2%)"

Quantum Gaussian states

—(R—t)"H(R—t)

[ ] p ~ €
o Vij=El3 {R —t;, B;—t}]
o [R, Ry =€y,

_1 2QVAT Y
H = 3 log (21{2\/3) i
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Classical Gaussian Hamiltonian learning

e Task: Learn Hamiltonian © from N sample from Gaussian distribution

T
ex@:c

Pla)=——%
(:L“) ﬁ?m €_xT®Ide)

where © € M, (R),0 > 0,0 =07,
e Covariance matrix:

(@71%’;‘
2

Y= E[:ci:cj] =

3

e Straightforward strategy: estimate X as 3, invert it to get 0.
Error propagation from A= — B! = A=1(B—- A)B~*:

- 1 . .
1© -0, < §HE’1IIOOHE’lHoollZ — Yl
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Classical Gaussian Hamiltonian learning, using sparsity

e Assumption: G has degree A — 1 — O is A-sparse.

v

e Conditional independence: P(z,|z,,..,z5) = P(x|xs, 27)

e We can obtain Hj; inverting the local V' for vertices {1,3,7}.
Marginal over vertices {1,3, 7} (still Gaussian):

Py 37y (2q,23,27) ~ / e Yietran(@101525 05080+
7 R(m—3)

~ e Z]e{l 3 7}(T101JT 05 21)-3, LGE{1,3,7} i1, ]#l(x"' i57;5)
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Classical Gaussian Hamiltonian learning, using sparsity

e Sparse inverse from local inversions:

Visn = iii‘*vﬁm= -

e Schur’s complement explanation: for M = (4 B) € C™1™m2 x Cmitm2,

- N=A- BD 10! —(A—-BD'C)"*BD™!
~\-D'c(A-BD7'C)"' D'+ D'C(A-BD'C)"'BD™!

First row of B and first column of C are zero — A;; = (N71);, A = (N71);,
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Classical Gaussian Hamiltonian learning, using sparsity

Estimates ‘A/ij =+ Zi\;l xét)xg-t).
For any 6 € (0,1), e € (0,1/2) and if N = Q(% log (Z4L)) then

V= Vil <e Vi, j € [m].

e Naive inverse: invert V —0

e Local inverse: construct H from local inverses of V'

Advantage of local inverse:
IV =V] <me — 1©,; — 0,1 < O(me) ,
”V{l,3,7} - V{1,3,7}Hoo < Ae —0;; — 6,5 < O(Ae)
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Classical Gaussian Hamiltonian and structure learning, using sparsity

Classical algorithms estimate both Hamiltonian and graph strucutre efficiently,
assuming sparsity
e Graphical LASSO [Friedman et al. 2008, Yuan, Lin 2007]: maximizing the
l,-regularized log-likelihood. Gives sample complexity upper bound O( 2oz logm)
sample complexity [Ravikumar et al. 2011], where « is a parameter encodlng a
certain incoherence condition of the precision matrix.

e Other approaches: one row at a time, via LASSO [Meinshausen, Bihlmann 2006],
Danzig [Yuan 2010], or l;-constrained optimization (CLIME) [Cai et al. 2011],
still sensitive to condition number.

o Graph selection: [Misra et al, 2020] shows a sample complexity O(Al;)#), with K

being a lower bound on the relative strenghts and no condition number

dependence, and matching lower bounds in [Wang et al., 2010]. The tradeoff is a

worse scaling in computational complexity.

12/23



(Demistifying) Hamiltonian-Covariance relations

e VtoH

1 20V 41 1 2
H=ttog (22t Y io— Lig (14 ——=—_ )i
Og<2iQV—I>Z 2 Og( +m(2v—m>)l

2
> 1 dt
= t—1 t 1 i
o 2iQV + (¢4 1)2

> 1 dt
=2V —iQ)~ ZQ/ , i€
b T+ 252V —iQ) LiQ (t+1)2

e Error propagation bounds can be derived for approximation of V or (2V — i)~}
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Quantum Gaussian trace distance learning

e Estimate V as V/ via heterodyne
(sample from Gaussian distribution with covariance matrix V + I)

e Let D(p|o) = Tr[plogp] — Tr[p log o]
o If |V;; — Vi;| <, then |H,; — H,;| = O(me) and

~

lo— 51, < 2D(pl5) + 2D(Fllp) = /e — H)(V — V)
= O(m3/%¢)

Previous bounds'* were ()(y/€). See also concurrent work °

“Mele et al. 2024, Holevo 2024a, 2024b

5Bijttel et al. 2024
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Quantum Gaussian trace distance learning

Theorem (Learning Gaussian states in trace distance (informal))

Let p(t, H) be a Gaussian state on m modes, with H = SDST. Then, for
1>¢,6 >0, it suffices to measure

N = O ?m* In(mé~)poly(|S]. (e2P1 — 1)(1 — =P 15) "1 max t,]))

copies of p with heterodyne to obtain an estimate of p up to trace distance ¢ with
success probability at least 1 — §.
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Quantum Gaussian Hamiltonian learning, approximate sparsity

H = f((2V —iQ)™1), with (2V —iQ)~! approximately sparse matrix:
[ — o t2HIQ

' i 2HZQ) (i9)

n=1

2V —iQ)! = — (iQ) =

1
2

!
= % Z 72[{19) (iQ) + E,

n=1

with |E| ., decreasing faster than exponentially in truncation degree.

H = STDS (normal form) --
HSHio (2] D] o)t e2IPloo

1E] o <1 ( (1) ) R

L~ logggt% - ”E”
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Quantum Gaussian Hamiltonian learning, approximate sparsity

o N = {N;(l)};em set of neighborhoods of radius [

e Quantum local inversion: Fori=1,...,m:

=
. HH
QV-iQ),, = — @2V-iQ); = — LI,V -iQ)= [EEEEsEes=N BN
v e W Y 1Illr |

o |LIy(2V —iQ) — (2V —iQ)~
entry-wise error of V.

o H= LIN(QV—iQ)iQfO I+t+12LINI(2V ol Gy

= O(A!E| ., + A%(), where ( is the

oo
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Quantum Gaussian Hamiltonian Learning

og C
We can take [ = PAdmaxe exp (W <2i5 = e))J , ¢ = O’ x5 and obtain

Theorem (Gaussian Hamiltonian learning)
Let p be a GS with Hamiltonian H of maximal degree A. Then it suffices to take

N = 0( log<n;)> Yy >0 (1)

copies of p suffice to obtain an estimate H satisfying |H — H| . < ¢ with probability
at least 1 — 6.
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Numerical examples

1D-Hamiltonians H = (24 ¢)I —|0X0| — (>_. |4) (i + 1| + h.c.),

%

local inversion vs plug-in, 10* samples, 5 repetitions

30

Average Reconstruction Error

Reconstruction Errors vs Number of Modes for 1D, ill-conditioned Hamiltonian

—e— Average Error Global Reconstruction
= Average Error Local Reconstruction

600
Number of modes (m)

(a) ll-conditioned Hamiltonian (¢ = 0)

800 1000 1200

Average Reconstruction€rror

30

Reconstruction Errors vs Number of Modes for 1D, well-conditioned Hamiltonian

—e— Average Error Glob

. -, P e e
T e i P

600
Number of modes (m)

(b) Well-conditioned Hamiltonian (¢ = 0.1)

1000 1200
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Graph Learning for Gaussian States

Promise: 0 < xk < min; ;cg maxs 5 cqo.1y [Hais, 20,
Algorithm sketch:
e lterate over all neighborhoods NV, and adversarial neighborhoods Wi,
[Nl = |V = A
e For each choice V; and adversarial neighborhoods N, perform local inversion
with V; UV, If in the inverse there are never large entries on the blocks (i, j),
jEeEN,/N,, we accept N,
e Compute LI, (2V —iQ) and thus H

e Remove spurious edges (below threshold)
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Graph Learning for Gaussian States

Why it works:
i i JUN; correctl
e | IV, is correct y entries of N;UN; are accurate N y
estimates for NV, /N, are small accept NV,
correctly accept NV
N, completing if all missed
i entries are small
e |V, is not correct \ nelghborh90d,
accurate estimates _
for T/N correctly reject NV,
L if a missed entry is big

e With the accepted neighborhood we obtain a good estimate of the Hamiltonian.
We obtain a logarithmic scaling in the number of modes because we only need to
invert locally.
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Graph Learning for Gaussian States

Theorem (Learning the graph of GS)

Let H be a Hamiltonian with graph G of degree A and edge set E, the condition

0 < k <ming jieg maxs 5 cr01} [Haios, 25-5,1- Then it suffices to take

N = (9( log<5>> vy > 0 (2)

copies of p suffice to learn the graph G with probability of success at least 1 — 9.
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Conclusions

Summary:

e Sample complexity upper bounds for Hamiltonian learning for bosonic Gaussian
states

e Efficient learning algorithms with practical measurement schemes (heterodyne)

e Optimal scaling in precision for trace distance estimation

Future directions:
e Lower bounds

e Improve dependence on ¢, A,

|H o and |H Y
e Graph learning with relative strength promise

e Fermionic states
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