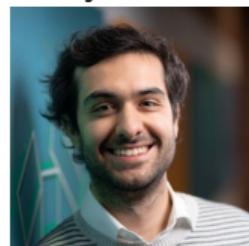


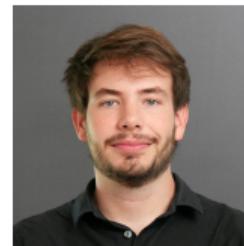
Efficient Hamiltonian, structure and trace distance learning of Gaussian states

Marco Fanizza^{1,2}, joint work with

Cambyses Rouzé¹



Daniel Stilck França²



¹Inria Saclay, Institut Polytechnique de Paris

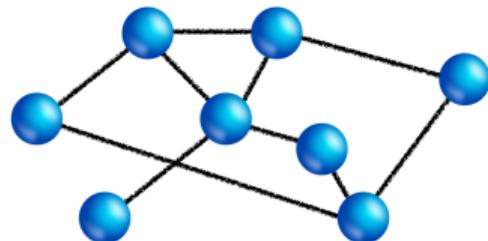
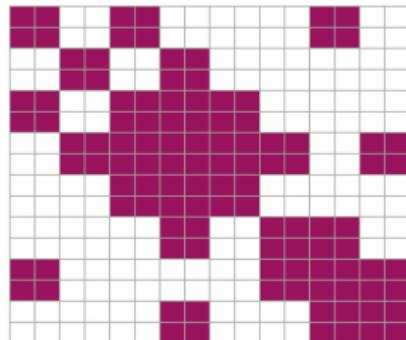
²University of Copenhagen

Learning the Hamiltonian of Gaussian states

- Learn Hamiltonian \mathcal{H} of a CV system of m modes from N copies of Gibbs state $\rho = \frac{e^{-\beta\mathcal{H}}}{\text{Tr}[e^{-\beta\mathcal{H}}]}$
- Access to **thermal equilibrium** states encoding dynamics
- In many-body physics interactions are local: interaction **graph** $G = ([m], E)$ of degree $\Delta - 1$
- Mixed Gaussian states are Gibbs states of quadratic Hamiltonian in $R = (X_1, P_1, \dots, X_m, P_m)$,

$$\beta\mathcal{H} = \sum_{i,j=1}^{2m} (R_i - t_i) \mathbf{H}_{ij} (R_j - t_j)$$

→ learn Hamiltonian matrix H



Background: Hamiltonian learning from Gibbs states

Qudit systems:

- Recent work on computational and sample efficient algorithms for known graphs, but no efficient graph learning algorithm¹²³⁴⁵.
- $N \geq \text{poly}(m, \epsilon^{-2^{O(\beta)}})$ copies and $N^{O(1)}$ time suffice⁴
- $O(\log m)$ in general and $O\left(\frac{e^{(\text{poly}(\beta))}}{\beta^2 \epsilon^2} \log m \text{poly}(\log \frac{1}{\epsilon})\right)$ for lattices⁵

Classical Random Markov fields/Gaussian Graphical Models:

$O(\frac{\log m}{\epsilon^2})$ for both Hamiltonian and graph learning

¹Anshu, Arunachalam, Kuwahara, Soleimanifar 2021

²Haah, Kothari, Tang 2021

³Rouzé, Stilck França, Onorati, Watson 2024

⁴Bakshi, Liu, Moitra, Tang 2024

⁵Chen, Anshu, Nguyen 2025

Learning with continuous variable systems

Systems with quadratic CV Hamiltonians:

- Electromagnetic fields (free space, fibre, cavity)
- Optomechanical systems
- Trapped ions (vibrational degrees of freedom)
- Cold atoms in optical lattices

...and analog simulators of lattice bosonic Hamiltonians

- Periwal et al. 2021: 18 sites, 10^4 Rubidium atoms/site, magnetization field
- Youssefi et al. 2022: 10 sites of a superconducting optomechanical systems
- Senanian et al. 2023: Photonic synthetic lattices with up to 10^5 sites

Learning with continuous variable systems

Rapidly developing fields about finite sample size guarantees:

- Trace distance learning⁶
- Gaussian trace distance bounds^{7 8 9}
- Gaussian testing¹⁰
- Gaussian unitary learning¹¹
- Hamiltonian learning from time evolution^{12 13}

⁶Mele, Mele, Bittel, Eisert, Giovannetti, Lami, Leone, Oliviero 2024

⁷Bittel, Mele, Mele, Tirone, Lami 2024

⁸Bittel, Mele, Eisert, Mele 2025

⁹Holevo 2024a,2024b

¹⁰Girardi, Witteveen, Mele, Bittel, Oliviero, Gross, Walter, 2025

¹¹Fanizza, Iyer, Lee, Mele, Mele, 2025

¹²Li, Tong, Gefen, Ni, Ying 2024

¹³Möbus, Bluhm, Caro, Werner, Rouzé 2023

Our contributions

We establish the following:

- Sample optimal scaling in precision for trace distance
- Efficient Gaussian Hamiltonian learning (known graph)
- Efficient graph learning (threshold κ)

Task	Sample compl.
Trace distance	$\mathcal{O}\left(\frac{m^3}{\epsilon^2} \log\left(\frac{m}{\delta}\right)\right)$
Hamiltonian (lattices)	$\mathcal{O}\left(\log\left(\frac{m}{\delta}\right) \frac{1}{\epsilon^{2+\gamma}}\right) \forall \gamma > 0$ $\mathcal{O}\left(\log\left(\frac{m}{\delta}\right) \frac{1}{\epsilon^2} \text{poly}(\log \frac{1}{\epsilon})\right)$
Graph	$\mathcal{O}\left(\log\left(\frac{m}{\delta}\right) \frac{1}{\kappa^{2+\gamma}}\right) \forall \gamma > 0$

Non-entangled (heterodyne) measurements and classical post-processing, requiring $\mathcal{O}(\text{poly}(mN))$ time for Hamiltonian learning.

Implicit dependence on $\|H\|_\infty$ (equivalent to $\beta\Delta$) and $\|H^{-1}\|_\infty$, see paper.

Classical vs Quantum Gaussian Hamiltonian learning

Classical Gaussian distributions

- $P(x) \sim e^{-(x-t)^\top \Theta (x-t)}$
- $\Sigma_{ij} := \mathbb{E}[(x_i - t_i)(x_j - t_j)^\top]$
- $\Theta = (2\Sigma)^{-1}$

Quantum Gaussian states

- $\rho \sim e^{-(R-t)^\top H(R-t)}$
- $V_{ij} := \mathbb{E}[\frac{1}{2} \{R_i - t_i, R_j - t_j\}]$
- $[R_j, R_k] = i\Omega_{jk}$
- $H = \frac{1}{2} \log \left(\frac{2i\Omega V + I}{2i\Omega V - I} \right) i\Omega$

Classical Gaussian Hamiltonian learning

- **Task:** Learn Hamiltonian Θ from N sample from Gaussian distribution

$$P(x) = \frac{e^{-x^\top \Theta x}}{\int_{\mathbb{R}^m} e^{-x^\top \Theta x} d^m x},$$

where $\Theta \in \mathbb{M}_m(\mathbb{R})$, $\Theta > 0$, $\Theta = \Theta^\top$.

- Covariance matrix:

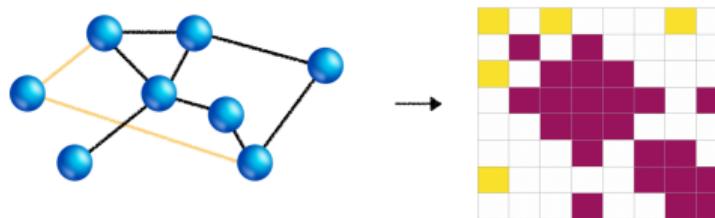
$$\Sigma_{ij} := \mathbb{E}[x_i x_j] = \frac{(\Theta^{-1})_{ij}}{2}$$

- Straightforward strategy: estimate Σ as $\hat{\Sigma}$, invert it to get $\hat{\Theta}$.
Error propagation from $A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}$:

$$\|\Theta - \hat{\Theta}\|_\infty \leq \frac{1}{2} \|\Sigma^{-1}\|_\infty \|\hat{\Sigma}^{-1}\|_\infty \|\Sigma - \hat{\Sigma}\|_\infty$$

Classical Gaussian Hamiltonian learning, using sparsity

- Assumption: G has degree $\Delta - 1 \rightarrow \Theta$ is Δ -sparse.

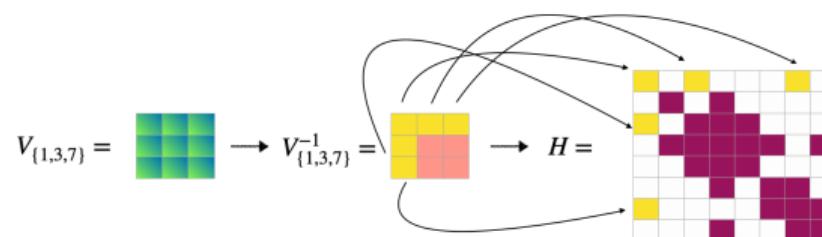


- Conditional independence:** $P(x_1|x_2, \dots, x_8) = P(x_1|x_3, x_7)$
- We can obtain H_{j1} inverting the local V for vertices $\{1, 3, 7\}$.
Marginal over vertices $\{1, 3, 7\}$ (still Gaussian):

$$\begin{aligned} P_{\{1,3,7\}}(x_1, x_3, x_7) &\sim \int_{\mathbb{R}^{(m-3)}} e^{-\sum_{j \in \{1,3,7\}} (x_1 \Theta_{1j} x_j + x_j \Theta_{j1} x_1) + \dots} \\ &\sim e^{-\sum_{j \in \{1,3,7\}} (\textcolor{magenta}{x_1 \Theta_{1j} x_j + x_j \Theta_{j1} x_1}) - \sum_{i,j \in \{1,3,7\}, i \neq 1, j \neq 1} (x_i \Theta'_{ij} x_j)} \end{aligned}$$

Classical Gaussian Hamiltonian learning, using sparsity

- Sparse inverse from local inversions:



- Schur's complement explanation: for $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbb{C}^{m_1+m_2} \times \mathbb{C}^{m_1+m_2}$,

$$M^{-1} = \begin{pmatrix} N \equiv (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{pmatrix}.$$

First row of B and first column of C are zero $\rightarrow A_{1j} = (N^{-1})_{1j}, A_{j1} = (N^{-1})_{j1}$

Classical Gaussian Hamiltonian learning, using sparsity

- Estimates $\hat{V}_{ij} = \frac{1}{N} \sum_{t=1}^N x_i^{(t)} x_j^{(t)}$.
For any $\delta \in (0, 1)$, $\epsilon \in (0, 1/2)$ and if $N = \Omega(\frac{1}{\epsilon^2} \log(\frac{m+1}{\delta}))$ then
 $|\hat{V}_{i,j} - V_{i,j}| \leq \epsilon \quad \forall i, j \in [m]$.
- Naive inverse: invert $\hat{V} \rightarrow \hat{\Theta}$
- Local inverse: construct \hat{H} from local inverses of \hat{V}
- Advantage of local inverse:
 $\|V - \hat{V}\|_\infty \leq m\epsilon \rightarrow |\Theta_{ij} - \hat{\Theta}_{ij}| \leq \mathcal{O}(m\epsilon)$,
 $\|V_{\{1,3,7\}} - \hat{V}_{\{1,3,7\}}\|_\infty \leq \Delta\epsilon \rightarrow |\Theta_{ij} - \hat{\Theta}_{ij}| \leq \mathcal{O}(\Delta\epsilon)$

Classical Gaussian Hamiltonian and structure learning, using sparsity

Classical algorithms estimate both Hamiltonian and graph structure efficiently, assuming sparsity

- Graphical LASSO [Friedman et al. 2008, Yuan, Lin 2007]: maximizing the l_1 -regularized log-likelihood. Gives sample complexity upper bound $O(\frac{\Delta^2}{\alpha^2 \epsilon^2} \log m)$ sample complexity [Ravikumar et al. 2011], where α is a parameter encoding a certain incoherence condition of the precision matrix.
- Other approaches: one row at a time, via LASSO [Meinshausen, Bühlmann 2006], Danzig [Yuan 2010], or l_1 -constrained optimization (CLIME) [Cai et al. 2011], still sensitive to condition number.
- Graph selection: [Misra et al, 2020] shows a sample complexity $O(\frac{\Delta \log m}{\kappa^2})$, with κ being a lower bound on the relative strengths and no condition number dependence, and matching lower bounds in [Wang et al., 2010]. The tradeoff is a worse scaling in computational complexity.

(Demistifying) Hamiltonian-Covariance relations

- V to H

$$\begin{aligned} H &= \frac{1}{2} \log \left(\frac{2i\Omega V + I}{2i\Omega V - I} \right) i\Omega = \frac{1}{2} \log \left(I + \frac{2}{i\Omega(2V - i\Omega)} \right) i\Omega. \\ &= \int_0^\infty \frac{1}{2i\Omega V + \frac{t-1}{t+1}I} \frac{dt}{(t+1)^2} i\Omega \\ &= (2V - i\Omega)^{-1} i\Omega \int_0^\infty \frac{1}{I + \frac{2t}{t+1}(2V - i\Omega)^{-1} i\Omega} \frac{dt}{(t+1)^2} i\Omega \end{aligned}$$

- Error propagation bounds can be derived for approximation of V or $(2V - i\Omega)^{-1}$.

Quantum Gaussian trace distance learning

- Estimate V as \hat{V} via heterodyne
(sample from Gaussian distribution with covariance matrix $V + I$)
- Let $D(\rho\|\sigma) = \text{Tr}[\rho \log \rho] - \text{Tr}[\rho \log \sigma]$
- If $|V_{ij} - \hat{V}_{ij}| \leq \epsilon$, then $|H_{ij} - \hat{H}_{ij}| = O(m\epsilon)$ and

$$\begin{aligned}\|\rho - \hat{\rho}\|_1 &\leq \sqrt{2D(\rho\|\hat{\rho}) + 2D(\hat{\rho}\|\rho)} = \sqrt{\text{Tr}[(\hat{H} - H)(V - \hat{V})]} \\ &= O(m^{3/2}\epsilon)\end{aligned}$$

Previous bounds¹⁴ were $\mathcal{O}(\sqrt{\epsilon})$. See also concurrent work¹⁵

¹⁴Mele et al. 2024, Holevo 2024a, 2024b

¹⁵Bittel et al. 2024

Quantum Gaussian trace distance learning

Theorem (Learning Gaussian states in trace distance (informal))

Let $\rho(t, H)$ be a Gaussian state on m modes, with $H = SDS^\top$. Then, for $1 > \epsilon, \delta > 0$, it suffices to measure

$$N = \mathcal{O}(\epsilon^{-2}m^3 \ln(m\delta^{-1}) \text{poly}(\|S\|_\infty, (e^{2\|D\|_\infty} - 1)(1 - e^{-2\|D^{-1}\|_\infty^{-1}})^{-1}, \max_i |t_i|))$$

copies of ρ with heterodyne to obtain an estimate of ρ up to trace distance ϵ with success probability at least $1 - \delta$.

Quantum Gaussian Hamiltonian learning, approximate sparsity

$H = f((2V - i\Omega)^{-1})$, with $(2V - i\Omega)^{-1}$ **approximately sparse** matrix:

$$\begin{aligned}(2V - i\Omega)^{-1} &= -\frac{I - e^{+2Hi\Omega}}{2}(i\Omega) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(2Hi\Omega)^n}{n!}(i\Omega) \\ &= \frac{1}{2} \sum_{n=1}^l \frac{(2Hi\Omega)^n}{n!}(i\Omega) + E,\end{aligned}$$

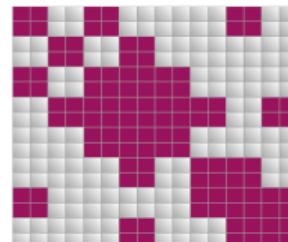
with $\|E\|_{\infty}$ decreasing faster than exponentially in truncation degree.

$$H = S^{\top} D S \text{ (normal form)}$$

$$\|E\|_{\infty} \leq \frac{\|S\|_{\infty}^2}{2} \left(\frac{(2\|D\|_{\infty})^{l+1} e^{2\|D\|_{\infty}}}{(l+1)!} \right)$$

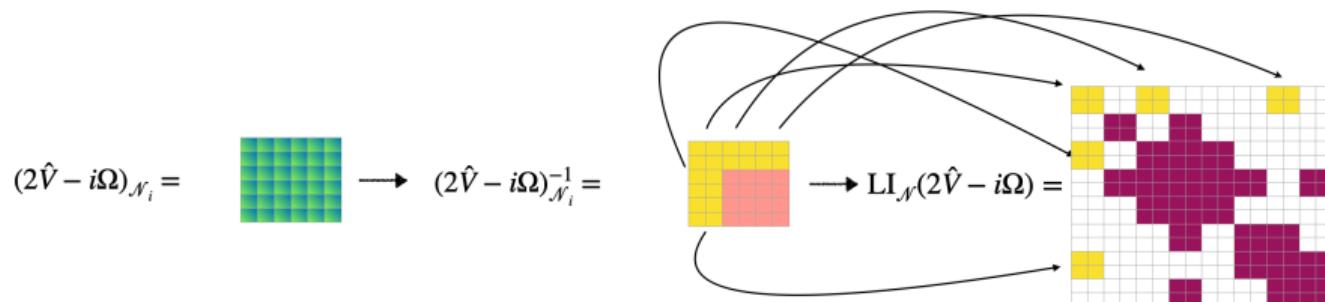
$$l \sim \frac{\log \frac{1}{\epsilon}}{\log \log \frac{1}{\epsilon}} \rightarrow \|E\|_{\infty} \sim \epsilon$$

$$(2V - i\Omega)^{-1} =$$



Quantum Gaussian Hamiltonian learning, approximate sparsity

- $\mathcal{N} = \{\mathcal{N}_i(l)\}_{i \in [m]}$ set of neighborhoods of radius l
- **Quantum local inversion:** For $i = 1, \dots, m$:



- $\|\text{LI}_{\mathcal{N}}(2\hat{V} - i\Omega) - (2V - i\Omega)^{-1}\|_{\infty} = O(\Delta^l \|E\|_{\infty} + \Delta^{2l} \zeta)$, where ζ is the entry-wise error of \hat{V} .
- $\hat{H} = \text{LI}_{\mathcal{N}}(2\hat{V} - i\Omega) i\Omega \int_0^{\infty} \frac{I}{1 + \frac{t}{t+1} 2 \text{LI}_{\mathcal{N}}(2\hat{V} - i\Omega) i\Omega} \frac{dt}{(t+1)^2} i\Omega$

Quantum Gaussian Hamiltonian Learning

We can take $l = \left\lfloor 2\Delta d_{\max} e \exp \left(W \left(\frac{\log \frac{C}{\epsilon'}}{2\Delta d_{\max} e} \right) \right) \right\rfloor$, $\zeta = C' \frac{\epsilon}{\Delta^{2l}}$ and obtain

Theorem (Gaussian Hamiltonian learning)

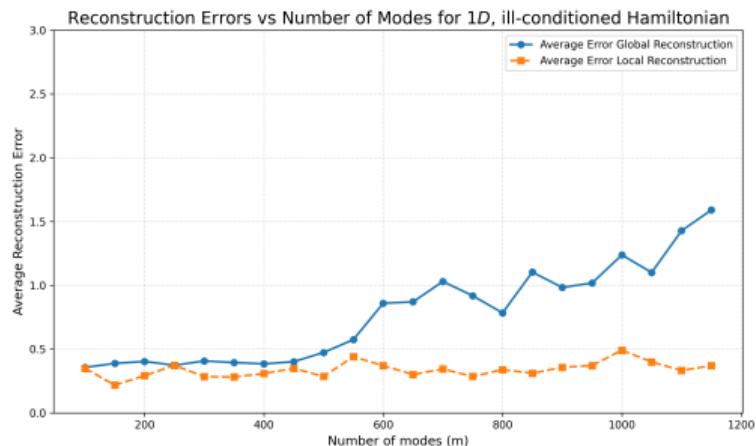
Let ρ be a GS with Hamiltonian H of maximal degree Δ . Then it suffices to take

$$N = \mathcal{O} \left(\frac{1}{\epsilon^{2+\gamma}} \log \left(\frac{m}{\delta} \right) \right) \quad \forall \gamma > 0 \quad (1)$$

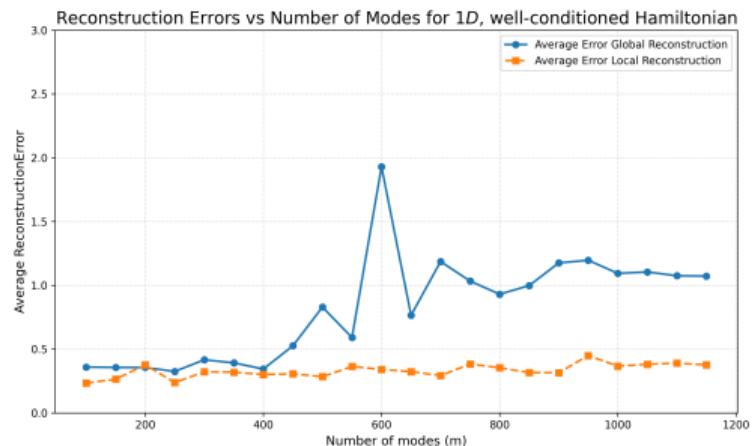
copies of ρ suffice to obtain an estimate \hat{H} satisfying $\|H - \hat{H}\|_\infty \leq \epsilon$ with probability at least $1 - \delta$.

Numerical examples

1D-Hamiltonians $H = (2 + c)I - |0\rangle\langle 0| - (\sum_i |i\rangle\langle i + 1| + h.c.)$,
local inversion vs plug-in, 10^4 samples, 5 repetitions



(a) Ill-conditioned Hamiltonian ($c = 0$)



(b) Well-conditioned Hamiltonian ($c = 0.1$)

Graph Learning for Gaussian States

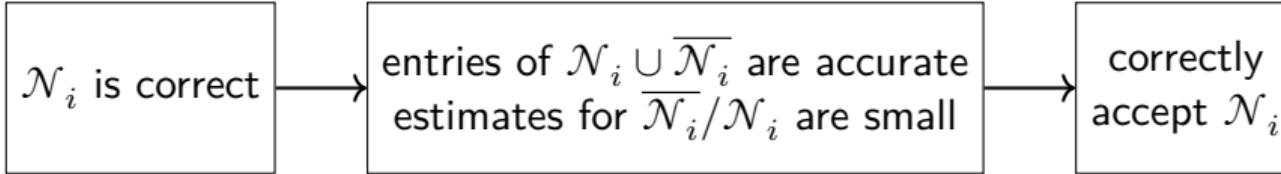
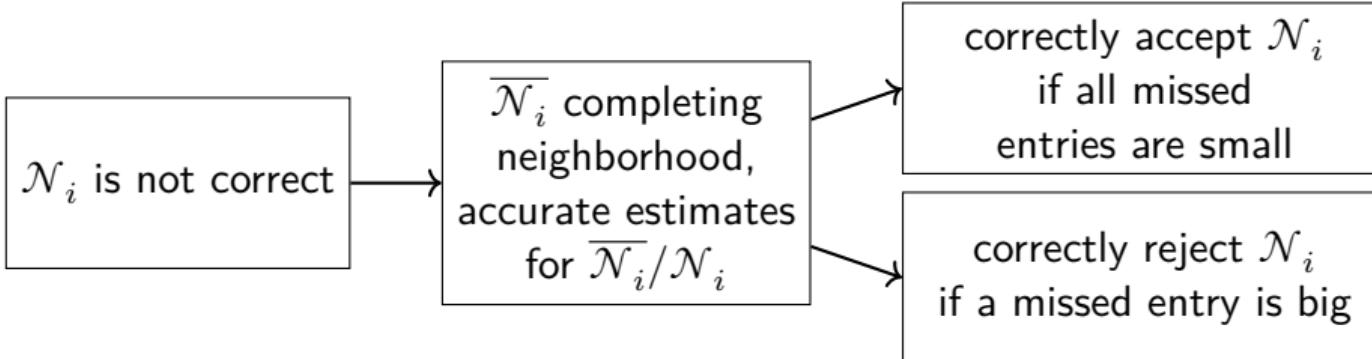
Promise: $0 < \kappa \leq \min_{(i,j) \in E} \max_{\delta_1, \delta_2 \in \{0,1\}} |H_{2i-\delta_1, 2j-\delta_2}|$

Algorithm sketch:

- Iterate over all neighborhoods \mathcal{N}_i and adversarial neighborhoods $\overline{\mathcal{N}}_i$,
 $|\mathcal{N}_i| = |\overline{\mathcal{N}}_i| = \Delta^l$
- For each choice \mathcal{N}_i and adversarial neighborhoods $\overline{\mathcal{N}}_i$, perform local inversion with $\mathcal{N}_i \cup \overline{\mathcal{N}}_i$. If in the inverse there are never large entries on the blocks (i, j) , $j \in \overline{\mathcal{N}}_i / \mathcal{N}_i$, we accept \mathcal{N}_i
- Compute $LI_{\mathcal{N}}(2\hat{V} - i\Omega)$ and thus \hat{H}
- Remove spurious edges (below threshold)

Graph Learning for Gaussian States

Why it works:

- \mathcal{N}_i is correct 
- \mathcal{N}_i is not correct 
- With the accepted neighborhood we obtain a good estimate of the Hamiltonian. We obtain a logarithmic scaling in the number of modes because we only need to invert locally.

Graph Learning for Gaussian States

Theorem (Learning the graph of GS)

Let H be a Hamiltonian with graph G of degree Δ and edge set E , the condition $0 < \kappa \leq \min_{(i,j) \in E} \max_{\delta_1, \delta_2 \in \{0,1\}} |H_{2i-\delta_1, 2j-\delta_2}|$. Then it suffices to take

$$N = \mathcal{O} \left(\frac{1}{\kappa^{2+\gamma}} \log \left(\frac{m}{\delta} \right) \right) \quad \forall \gamma > 0 \quad (2)$$

copies of ρ suffice to learn the graph G with probability of success at least $1 - \delta$.

Conclusions

Summary:

- Sample complexity upper bounds for Hamiltonian learning for bosonic Gaussian states
- Efficient learning algorithms with practical measurement schemes (heterodyne)
- Optimal scaling in precision for trace distance estimation

Future directions:

- Lower bounds
- Improve dependence on ϵ , Δ , $\|H\|_\infty$ and $\|H^{-1}\|_\infty$
- Graph learning with relative strength promise
- Fermionic states