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Learning the Hamiltonian of Gaussian states

• Learn Hamiltonian ℋ of a CV system of 𝑚 modes
from 𝑁 copies of Gibbs state 𝜌 = 𝑒−𝛽ℋ

Tr[𝑒−𝛽ℋ]

• Access to thermal equilibrium states encoding
dynamics

• In many-body physics interactions are local:
interaction graph 𝐺 = ([𝑚], E) of degree Δ − 1

• Mixed Gaussian states are Gibbs states of quadratic
Hamiltonian in 𝑅 = (𝑋1, 𝑃1, ..., 𝑋𝑚, 𝑃𝑚),

𝛽ℋ =
2𝑚
∑
𝑖,𝑗=1

(𝑅𝑖 − 𝑡𝑖)𝐻𝑖𝑗(𝑅𝑗 − 𝑡𝑗)

→ learn Hamiltonian matrix 𝐻
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Background: Hamiltonian learning from Gibbs states

Qudit systems:
• Recent work on computational and sample efficient algorithms for known graphs,

but no efficient graph learning algorithm12345.

• 𝑁 ≥ poly(𝑚, 𝜖−2𝑂(𝛽)) copies and 𝑁𝑂(1) time suffice4

• 𝑂(log 𝑚) in general and 𝑂 (𝑒(poly(𝛽))
𝛽2𝜖2 log 𝑚 poly(log 1

𝜖 )) for lattices5

Classical Random Markov fields/Gaussian Graphical Models:
𝑂( log 𝑚

𝜖2 ) for both Hamiltonian and graph learning

1Anshu, Arunachalam, Kuwahara, Soleimanifar 2021
2Haah, Kothari, Tang 2021
3Rouzé, Stilck França, Onorati, Watson 2024
4Bakshi, Liu, Moitra, Tang 2024
5Chen, Anshu, Nguyen 2025
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Learning with continuous variable systems

Systems with quadratic CV Hamiltonians:
• Electromagnetic fields (free space, fibre, cavity)
• Optomechanical systems
• Trapped ions (vibrational degrees of freedom)
• Cold atoms in optical lattices

...and analog simulators of lattice bosonic Hamiltonians
• Periwal et al. 2021: 18 sites, 104 Rubidium atoms/site, magnetization field
• Youssefi et al. 2022: 10 sites of a superconducting optomechanical systems
• Senanian et al. 2023: Photonic synthetic lattices with up to 105 sites
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Learning with continuous variable systems

Rapidly developing fields about finite sample size guarantees:
• Trace distance learning6

• Gaussian trace distance bounds7 8 9

• Gaussian testing10

• Gaussian unitary learning11

• Hamiltonian learning from time evolution12 13

6Mele, Mele, Bittel, Eisert, Giovannetti, Lami, Leone, Oliviero 2024
7Bittel, Mele, Mele, Tirone, Lami 2024
8Bittel, Mele, Eisert, Mele 2025
9Holevo 2024a,2024b

10Girardi, Witteveen, Mele, Bittel, Oliviero, Gross, Walter, 2025
11Fanizza, Iyer, Lee, Mele, Mele, 2025
12Li, Tong, Gefen, Ni, Ying 2024
13Möbus, Bluhm, Caro, Werner, Rouzé 2023
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Our contributions

We establish the following:
• Sample optimal scaling in

precision for trace distance
• Efficient Gaussian Hamiltonian

learning (known graph)
• Efficient graph learning

(threshold 𝜅)

Task Sample compl.

Trace distance 𝒪 (𝑚3
𝜖2 log(𝑚

𝛿 ))

Hamiltonian 𝒪 (log (𝑚
𝛿 ) 1

𝜖2+𝛾 ) ∀𝛾 > 0

(lattices) 𝒪 (log (𝑚
𝛿 ) 1

𝜖2 poly(log 1
𝜖 ))

Graph 𝒪 (log (𝑚
𝛿 ) 1

𝜅2+𝛾 ) ∀𝛾 > 0

Non-entangled (heterodyne) measurements and classical post-processing, requiring
𝑂(poly(𝑚𝑁)) time for Hamiltonian learning.
Implicit dependence on ‖𝐻‖∞ (equivalent to 𝛽Δ) and ‖𝐻−1‖∞, see paper.
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Classical vs Quantum Gaussian Hamiltonian learning

Classical Gaussian distributions

• 𝑃(𝑥) ∼ 𝑒−(𝑥−𝑡)⊺Θ(𝑥−𝑡)

• Σ𝑖𝑗 ∶= 𝔼[(𝑥𝑖 − 𝑡𝑖)(𝑥𝑗 − 𝑡𝑗)]

• Θ = (2Σ)−1

Quantum Gaussian states

• 𝜌 ∼ 𝑒−(𝑅−𝑡)⊺𝐻(𝑅−𝑡)

• 𝑉𝑖𝑗 ∶= 𝔼[1
2 {𝑅𝑖 − 𝑡𝑖, 𝑅𝑗 − 𝑡𝑗}]

• [𝑅𝑗, 𝑅𝑘] = 𝑖Ω𝑗𝑘

• 𝐻 = 1
2 log (2𝑖Ω𝑉 +𝐼

2𝑖Ω𝑉 −𝐼 ) 𝑖Ω
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Classical Gaussian Hamiltonian learning
• Task: Learn Hamiltonian Θ from 𝑁 sample from Gaussian distribution

𝑃(𝑥) = 𝑒−𝑥⊺Θ𝑥

∫ℝ𝑚 𝑒−𝑥⊺Θ𝑥d𝑚𝑥,

where Θ ∈ 𝕄𝑚(ℝ), Θ > 0, Θ = Θ⊺.

• Covariance matrix:
Σ𝑖𝑗 ∶= 𝔼[𝑥𝑖𝑥𝑗] = (Θ−1)𝑖𝑗

2
• Straightforward strategy: estimate Σ as Σ̂, invert it to get Θ̂.

Error propagation from 𝐴−1 − 𝐵−1 = 𝐴−1(𝐵 − 𝐴)𝐵−1:

‖Θ − Θ̂‖∞ ≤ 1
2‖Σ−1‖∞‖Σ̂−1‖∞‖Σ − Σ̂‖∞
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Classical Gaussian Hamiltonian learning, using sparsity
• Assumption: 𝐺 has degree Δ − 1 → Θ is Δ-sparse.

• Conditional independence: 𝑃 (𝑥1|𝑥2, .., 𝑥8) = 𝑃(𝑥1|𝑥3, 𝑥7)
• We can obtain 𝐻𝑗1 inverting the local 𝑉 for vertices {1, 3, 7}.

Marginal over vertices {1, 3, 7} (still Gaussian):

𝑃{1,3,7}(𝑥1, 𝑥3, 𝑥7) ∼ ∫
ℝ(𝑚−3)

𝑒− ∑𝑗∈{1,3,7}(𝑥1Θ1𝑗𝑥𝑗+𝑥𝑗Θ𝑗1𝑥1)+...

∼ 𝑒− ∑𝑗∈{1,3,7}(𝑥1Θ1𝑗𝑥𝑗+𝑥𝑗Θ𝑗1𝑥1)−∑𝑖,𝑗∈{1,3,7},𝑖≠1,𝑗≠1(𝑥𝑖Θ′
𝑖𝑗𝑥𝑗)
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Classical Gaussian Hamiltonian learning, using sparsity

• Sparse inverse from local inversions:

• Schur’s complement explanation: for 𝑀 = ( 𝐴 𝐵
𝐶 𝐷 ) ∈ ℂ𝑚1+𝑚2 × ℂ𝑚1+𝑚2 ,

𝑀−1 = ( 𝑁 ≡ (𝐴 − 𝐵𝐷−1𝐶)−1 −(𝐴 − 𝐵𝐷−1𝐶)−1𝐵𝐷−1

−𝐷−1𝐶(𝐴 − 𝐵𝐷−1𝐶)−1 𝐷−1 + 𝐷−1𝐶(𝐴 − 𝐵𝐷−1𝐶)−1𝐵𝐷−1) .

First row of 𝐵 and first column of 𝐶 are zero → 𝐴1𝑗 = (𝑁−1)1𝑗, 𝐴𝑗1 = (𝑁−1)𝑗1
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Classical Gaussian Hamiltonian learning, using sparsity

• Estimates ̂𝑉𝑖𝑗 = 1
𝑁 ∑𝑁

𝑡=1 𝑥(𝑡)
𝑖 𝑥(𝑡)

𝑗 .
For any 𝛿 ∈ (0, 1), 𝜖 ∈ (0, 1/2) and if 𝑁 = Ω( 1

𝜖2 log (𝑚+1
𝛿 )) then

| ̂𝑉𝑖,𝑗 − 𝑉𝑖,𝑗| ≤ 𝜖 ∀𝑖, 𝑗 ∈ [𝑚] .

• Naive inverse: invert ̂𝑉 →Θ̂
• Local inverse: construct 𝐻̂ from local inverses of ̂𝑉
• Advantage of local inverse:

‖𝑉 − ̂𝑉 ‖∞ ≤ 𝑚𝜖 → |Θ𝑖𝑗 − Θ̂𝑖𝑗| ≤ 𝒪(𝑚𝜖) ,
‖𝑉{1,3,7} − ̂𝑉{1,3,7}‖∞ ≤ Δ𝜖 →|Θ𝑖𝑗 − Θ̂𝑖𝑗| ≤ 𝒪(Δ𝜖)
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Classical Gaussian Hamiltonian and structure learning, using sparsity
Classical algorithms estimate both Hamiltonian and graph strucutre efficiently,
assuming sparsity

• Graphical LASSO [Friedman et al. 2008, Yuan, Lin 2007]: maximizing the
𝑙1-regularized log-likelihood. Gives sample complexity upper bound 𝑂( Δ2

𝛼2𝜖2 log 𝑚)
sample complexity [Ravikumar et al. 2011], where 𝛼 is a parameter encoding a
certain incoherence condition of the precision matrix.

• Other approaches: one row at a time, via LASSO [Meinshausen, Bühlmann 2006],
Danzig [Yuan 2010], or 𝑙1-constrained optimization (CLIME) [Cai et al. 2011],
still sensitive to condition number.

• Graph selection: [Misra et al, 2020] shows a sample complexity 𝑂(Δ log 𝑚
𝜅2 ), with 𝜅

being a lower bound on the relative strenghts and no condition number
dependence, and matching lower bounds in [Wang et al., 2010]. The tradeoff is a
worse scaling in computational complexity.
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(Demistifying) Hamiltonian-Covariance relations

• 𝑉 to 𝐻

𝐻 = 1
2 log (2𝑖Ω𝑉 + 𝐼

2𝑖Ω𝑉 − 𝐼 ) 𝑖Ω = 1
2 log (𝐼 + 2

𝑖Ω(2𝑉 − 𝑖Ω)) 𝑖Ω.

= ∫
∞

0

1
2𝑖Ω𝑉 + 𝑡−1

𝑡+1𝐼
𝑑𝑡

(𝑡 + 1)2 𝑖Ω

= (2𝑉 − 𝑖Ω)−1𝑖Ω ∫
∞

0

1
𝐼 + 2𝑡

𝑡+1(2𝑉 − 𝑖Ω)−1𝑖Ω
𝑑𝑡

(𝑡 + 1)2 𝑖Ω

• Error propagation bounds can be derived for approximation of 𝑉 or (2𝑉 − 𝑖Ω)−1.
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Quantum Gaussian trace distance learning

• Estimate 𝑉 as ̂𝑉 via heterodyne
(sample from Gaussian distribution with covariance matrix 𝑉 + 𝐼)

• Let 𝐷(𝜌‖𝜎) = Tr[𝜌 log 𝜌] − Tr[𝜌 log 𝜎]
• If |𝑉𝑖𝑗 − ̂𝑉𝑖𝑗| ≤ 𝜖, then |𝐻𝑖𝑗 − 𝐻̂𝑖𝑗| = 𝑂(𝑚𝜖) and

‖𝜌 − ̂𝜌‖1 ≤ √2𝐷(𝜌‖ ̂𝜌) + 2𝐷( ̂𝜌‖𝜌) = √Tr[(𝐻̂ − 𝐻)(𝑉 − ̂𝑉 )]
= 𝑂(𝑚3/2𝜖)

Previous bounds14 were 𝒪(√𝜖). See also concurrent work 15

14Mele et al. 2024, Holevo 2024a, 2024b
15Bittel et al. 2024
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Quantum Gaussian trace distance learning

Theorem (Learning Gaussian states in trace distance (informal))
Let 𝜌(𝑡, 𝐻) be a Gaussian state on 𝑚 modes, with 𝐻 = 𝑆𝐷𝑆⊺. Then, for
1 > 𝜖, 𝛿 > 0, it suffices to measure

𝑁 = 𝒪(𝜖−2𝑚3 ln(𝑚𝛿−1)poly(‖𝑆‖∞, (𝑒2‖𝐷‖∞ − 1)(1 − 𝑒−2‖𝐷−1‖−1
∞ )−1, max

𝑖
|𝑡𝑖|))

copies of 𝜌 with heterodyne to obtain an estimate of 𝜌 up to trace distance 𝜖 with
success probability at least 1 − 𝛿.
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Quantum Gaussian Hamiltonian learning, approximate sparsity
𝐻 = 𝑓((2𝑉 − 𝑖Ω)−1), with (2𝑉 − 𝑖Ω)−1 approximately sparse matrix:

(2𝑉 − 𝑖Ω)−1 = −𝐼 − 𝑒+2𝐻𝑖Ω

2 (𝑖Ω) = 1
2

∞
∑
𝑛=1

(2𝐻𝑖Ω)𝑛

𝑛! (𝑖Ω)

= 1
2

𝑙
∑
𝑛=1

(2𝐻𝑖Ω)𝑛

𝑛! (𝑖Ω) + 𝐸 ,

with ‖𝐸‖∞ decreasing faster than exponentially in truncation degree.

𝐻 = 𝑆⊺𝐷𝑆 (normal form)
‖𝐸‖∞ ≤ ‖𝑆‖2

∞
2 ( (2‖𝐷‖∞)𝑙+1𝑒2‖𝐷‖∞

(𝑙+1)! )
𝑙 ∼ log 1

𝜖
log log 1

𝜖
→ ‖𝐸‖∞ ∼ 𝜖
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Quantum Gaussian Hamiltonian learning, approximate sparsity

• 𝒩 = {𝒩𝑖(𝑙)}𝑖∈[𝑚] set of neighborhoods of radius 𝑙
• Quantum local inversion: For 𝑖 = 1, ..., 𝑚:

• ‖LI𝒩(2 ̂𝑉 − 𝑖Ω) − (2𝑉 − 𝑖Ω)−1‖∞ = 𝑂(Δ𝑙‖𝐸‖∞ + Δ2𝑙𝜁), where 𝜁 is the
entry-wise error of ̂𝑉 .

• 𝐻̂ = LI𝒩(2 ̂𝑉 − 𝑖Ω)𝑖Ω ∫∞
0

𝐼
𝐼+ 𝑡

𝑡+1 2 LI𝒩(2 ̂𝑉 −𝑖Ω)𝑖Ω
𝑑𝑡

(𝑡+1)2 𝑖Ω
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Quantum Gaussian Hamiltonian Learning

We can take 𝑙 = ⌊2Δ𝑑max𝑒 exp (𝑊 ( log 𝐶
𝜀′

2Δ𝑑max𝑒))⌋ , 𝜁 = 𝐶′ 𝜖
Δ2𝑙 and obtain

Theorem (Gaussian Hamiltonian learning)
Let 𝜌 be a GS with Hamiltonian 𝐻 of maximal degree Δ. Then it suffices to take

𝑁 = 𝒪 ( 1
𝜖2+𝛾 log (𝑚

𝛿 )) ∀𝛾 > 0 (1)

copies of 𝜌 suffice to obtain an estimate 𝐻̂ satisfying ‖𝐻 − 𝐻̂‖∞ ≤ 𝜖 with probability
at least 1 − 𝛿.
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Numerical examples

1D-Hamiltonians 𝐻 = (2 + 𝑐)𝐼 − |0⟩⟨0| − (∑𝑖 |𝑖⟩⟨𝑖 + 1| + ℎ.𝑐.),
local inversion vs plug-in, 104 samples, 5 repetitions

(a) Ill-conditioned Hamiltonian (𝑐 = 0) (b) Well-conditioned Hamiltonian (𝑐 = 0.1)
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Graph Learning for Gaussian States

Promise: 0 < 𝜅 ≤ min(𝑖,𝑗)∈E max𝛿1,𝛿2∈{0,1} |𝐻2𝑖−𝛿1,2𝑗−𝛿2
|

Algorithm sketch:
• Iterate over all neighborhoods 𝒩𝑖 and adversarial neighborhoods 𝒩𝑖,

|𝒩𝑖| = |𝒩𝑖| = Δ𝑙

• For each choice 𝒩𝑖 and adversarial neighborhoods 𝒩𝑖, perform local inversion
with 𝒩𝑖 ∪ 𝒩𝑖. If in the inverse there are never large entries on the blocks (𝑖, 𝑗),
𝑗 ∈ 𝒩𝑖/𝒩𝑖, we accept 𝒩𝑖

• Compute LI𝒩(2 ̂𝑉 − 𝑖Ω) and thus 𝐻̂
• Remove spurious edges (below threshold)
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Graph Learning for Gaussian States
Why it works:

• 𝒩𝑖 is correct entries of 𝒩𝑖 ∪ 𝒩𝑖 are accurate
estimates for 𝒩𝑖/𝒩𝑖 are small

correctly
accept 𝒩𝑖

• 𝒩𝑖 is not correct
𝒩𝑖 completing
neighborhood,

accurate estimates
for 𝒩𝑖/𝒩𝑖

correctly accept 𝒩𝑖
if all missed

entries are small

correctly reject 𝒩𝑖
if a missed entry is big

• With the accepted neighborhood we obtain a good estimate of the Hamiltonian.
We obtain a logarithmic scaling in the number of modes because we only need to
invert locally.
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Graph Learning for Gaussian States

Theorem (Learning the graph of GS)
Let 𝐻 be a Hamiltonian with graph 𝐺 of degree Δ and edge set E, the condition
0 < 𝜅 ≤ min(𝑖,𝑗)∈E max𝛿1,𝛿2∈{0,1} |𝐻2𝑖−𝛿1,2𝑗−𝛿2

|. Then it suffices to take

𝑁 = 𝒪 ( 1
𝜅2+𝛾 log (𝑚

𝛿 )) ∀𝛾 > 0 (2)

copies of 𝜌 suffice to learn the graph 𝐺 with probability of success at least 1 − 𝛿.
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Conclusions

Summary:
• Sample complexity upper bounds for Hamiltonian learning for bosonic Gaussian

states
• Efficient learning algorithms with practical measurement schemes (heterodyne)
• Optimal scaling in precision for trace distance estimation

Future directions:
• Lower bounds
• Improve dependence on 𝜖, Δ, ‖𝐻‖∞ and ‖𝐻−1‖∞
• Graph learning with relative strength promise
• Fermionic states
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