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Figurc 1: Illustration of the NISQ complezity class: (a) Complexity classes: NISQ contains prob-
lems that can be solved by classical computation (BPP), and some problems that can be solved
by quantum computation (BQP). (b) NISQ algorithm: An algorithm in the complexity class NISQ
is modeled by a hybrid quantum-classical algorithm, where a classical computer can specify the
circuit to run on a noisy quantum device and the device would run a noisy version of the cireuit
and return a random classical bitstring obtained from noisy measurement.
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Abstract

The recent proliferation of NISQ) devices has made it imperative to understand their compu-
tational power. In this work, we define and study the complexity class NISQ, which is intended
to encapsulate problems that can be efliciently solved by a classical computer with access to a
NISQ device. To model existing devices, we assume the device can (1) noisily initialize all qubits,
(2) apply many noisy quantum gates, and (3) perform a noisy measurement on all qubits. We
first give evidence that BPP C NISQ C BQP, by demonstrating super-polynomial oracle separa-
tions among the three classes, based on modifications of Simon’s problem. We then consider the
power of NISQ for three well-studied problems. For unstructured search, we prove that NISQ
cannot achieve a Grover-like quadratic speedup over BPP. For the Bernstein-Vazirani problem,
we show that NISQ only needs a number of queries logarithmic in what is required for BPP.
Finally, for a quantum state learning problem, we prove that NISQ is exponentially weaker than
classical computation with access to noiseless constant-depth quantum circuits.



What is NISQ complexity class?

1.

Noisy quantum gates. The device can execute noisy two-qubit logic gates. Using quantum
logic gates (as opposed to, say, more general non-unitary CPTP maps) is standard in existing
quantum devices, and it is well-understood that in real-wo ] ] ]
noise. For concreteness, we consider the standard model offlocal depolarizing noise per qubit.
However, our results extend to more general noise models; see Remarks A.4, C.19 anc

.t).

Noisy state preparation at the start. The quantum devices have a fixed number of qubits
and as such cannot bring in fresh qubits during the computation. This means that the device
must prepare all qubits at the start. Notably, since we assume all quantum gates are subject to
noise, this means all qubits will accrue entropy throughout the computation.

Noisy measurement at the end. The quantum devices are limited to perform noisy mea-
surements only at the end of the computation, which means the measurement is performed on
all qubits simultaneously. From a physical perspective, this constraint arises due to the difficulty
of isolating subsets of qubits and measuring them without decohering the residual qubits.

Definition 2.1 (NISQ complexity class, informal). NISQ contains all problems that can be solved
by a polynomial-time probabilistic classical algorithm with access lo a noisy quantum dewvice. To
solve a problem of size n, the classical algorithm can access a noisy quantum device thal can:

1. Prepare a noisy poly(n)-qubil all-zero state;
2. Apply arbitrarily many layers of noisy lwo-qubil gales;

3. Perform a noisy computational basis measurements on all the qubils simultaneously.

All quantum operalions are subject to a constant amount of depolarizing noise per qubil.

4/55
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Inclusion vs Strict inclusion /

BPP C NISQ <« NISQ have super-polynomial speedup over classical algorithms
NISQ € BQP < NISQ not as powerful as FTQC

c.f. Simon’s problem; for f: {0,1}" — {0,1}", f(x) is 2-to-1 with f(z) = f(z & s) or 1-to-1

There is a classical oracle O; s.t. BPPY* C NISQ®"
“Robustified” f: {0,1}" — {0,1}",n' > n,Vz € {0,1}*,3A4, C {0,1}" s.t. f(z) = f(z) Vz € A,

~

f is robust to noise, allows NISQ) to achieve super—polynomial speed up

There is a classical oracle O; s.t. NISQO2 C BQPO2

~

“Lifted” f, gives exponentially little information to any noisy access
Requires exponentially more queries than FTQC. In fact, NISQ®? C BPPRNC’
BPPONCY ()] . depth-f(n) FTQC, BPPNC" when f(n) = O(log’(n)) — BPPNC C BQP



Query complexity on more practical problems

6/55

Problem BPP BQP NISQx
Grover: f(x) =1 when z = w(unknown), f(z) =0 rest | O(2") O(2"/?) at least O(A2")
. . o log n
Bernstein-Vazrani: f(z) = x - s for unknown s O(n) O(1) at most O (ﬁ
Shadow tomography: learn [tr(pP)| up to const error | O(4™) | at most O(n) at least O(e?™)
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NISQ complexity class

A.1 Definition of the complexity class

We begin by recalling the single-qubit depolarizing channel D, .

Definition A.1 (Single-qubit depolarizing channel). Given A € |0,1|. We define the single-qubit
depolarizing channel to be Dy[p] £ (1 — X)p+ A(I/2), where p is a single-qubil density matriz.

Definition A.2 (
can be wriltten as

-gubil unitary U is a depth-1 unitary of U
tensor product of two-qubil unitaries.

We consider noisy quantum circuits with noise level A to be defined as follows.

Definition A.3 (Output of a noisy quantum circuit). Let A € [0,1] and n € N. Given T € N
and a sequence of T depth-1 unitaries Uy, ..., Up, the outpul of the corresponding A-noisy depth-T
quantum circuit is a random n-bit string s € {0, 1}"™ sampled from the disiribution

p(s) = (s| DE"[Ur ... D" [U2DE" [, DE™[[0Y0™JUTUd] ... UL] |s) (1)

where every quantum operation is followed by a layer of single-qubil depolarizing channel. When
A =0, we say that this circuil is noiseless.
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NISQ complexity class

Remark A.4. We work with the single-qubit depolarizing channel as it is the most standard model
for local noise. One could also consider stronger noise models, e.q. every qubil is randomly corrupted
with probability A by an adversary rather than randomly decohered. Tautologically, the lower bounds
we prove in this work will translate to such stronger models. We also prove our upper bounds,
namely Theorem 2.2 and 2.5, under this stronger model (see Remarks C.19 and E.5).

Definition A.5 (Noisy quantum circuit oracle). We define NQC, {o be an oracle thal takes in
an inleger n and a sequence of depth-1 n-qubit unitary {Uk r=1,..1 for any T € N and oulpuls a
random n-bil string s according to Eq. (1).

We define the time to query NQC, with T depth-1 n-qubit unitaries to be O(nT'), which is linear
in the time to write down the input to the query.

We now define NISQ algorithms, which are classical algorithms with access to the noisy quantum
circuit oracle. This provides a formal definition for hybrid noisy quantum-classical computation.

Definition A.6 (NISQ algorithm). A NISQ, algorithm with access to A-noisy quantum circuits
is defined as a probabilistic Turing machine M that can query NQC, to oblain an outpul bilslring
s for any number of times, and is denoted as Ay £ MNQCx. The runtime of A, is given by the
classical runtime of M plus the sum of the limes to query NQC, .
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NISQ complexity class

We now define NISQ algorithms, which are classical algorithms with access to the noisy quantum
circuit oracle. This provides a formal definition for hybrid noisy quantum-classical computation.

Definition A.6 (NISQ algorithm). A NISQ, algorithm with access to A-noisy quantum circuits
is defined as a probabilistic Turing machine M that can query NQC, to oblain an outpul bilstring
s for any number of times, and is denoted as Ay, £ MNQCx. The runtime of A, is given by the
classical runtime of M plus the sum of the times to query NQC, .

The NISQ complexity class for decision problems is defined as follows. Observe that the following
recovers the definition for BPP when MNQCx in the definition of Ay above is replaced by M.

Definition A.7 (NISQ complexity). A language L C {0,1}* is in NISQ if there exists a NISQ)
algorithm Ay for some constant X > 0 that decides L in polynomial time, that is, such that

o for all x € {0,1}*, Ay produces an output in lime poly(|x|), where |z| is the length of x;

e for all x € L, Ay oulpuls 1 with probabilily at least 2/3;

e forall x & L, Ay outpuls 0 with probabilily at least 2/3.
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Classical & Quantum oracle /

Definition A.8 (Classical oracle O). A classical oracle O is a function from {0,1}™ to {0,1}™ for

some n,m € N. The (n + m)-qubit unilary Uo corresponding to the classical oracle O is given by
Uo |z) |y) = |z) |y & O(x)) for all z € {0,1}",y € {0,1}™.

Definition A.9 (Classical algorithm with access to Q). A classical algorithm M© with access to
(O 1is a probabilistic Turing machine M that can query O by choosing an n-bil input x and obtaining
the m-bit oulput O(zx).

Definition A.10 (Quantum algorithm with access to O). A quantum algorithm Q® with access
to O is a uniform family of quantum circuits {Uy, }n, where U, is an n'-qubil quantum circuil given
by

Un 2 Vo (Uo ®I) - (Up @ NVa2(Up @ I)Va 1,

for some integer k € N and n'-qubit unitaries V,,1,...,V, . given as the product of many depth-1
unitaries. Here, I denotes the identity matriz over n' — n qubits.
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Classical & Quantum oracle /

Definition A.11 (Noisy quantum circuit oracle with access to Q). We define NQC? to be an
oracle that takes in an inleger n' and a sequence of n'-qubit unitaries {Uk k=1, 1 for any T € N,

where U can either be a depth-1 unilary or Up ® I, to a random n-bit sitring s sampled according
to the distribution

p(s) = (s| D" [Ur ... D™ [U DE™ [U, DE™ ([0 Y0™ JUT UL ... UL] |s) .

Definition A.12 (NISQ algorithm with access to O). Let A € [0,1]. A NISQ, algorithm A =
(MNQENO with access to O is a probabilistic Turing machine M that has the ability to classically
query (O by choosing the n-bit input x to obtain Ehﬁlm—hﬂ, output ()(:1:),' as well as the ability to
query NQCY by choosing n' and {Uy te=1,.. 7 lo obtain d random n’-bil string s| The runtime of
Af 1s qiven by the sum of the classical runtime of M, the number of classical queries to O, and the

. ()
sum of the times to query NQCY .

With this definition in hand, we can extend the usual notions of relativized complexity to NISQ:

Definition A.13 (Relativized NISQ). Given a sequence of oracles O : {0,1}* — {0,1}™(")
parametrized by n € N, a language L C {0,1}* is in NISQU if there exists a constant A > 0
and a NISQy algorithm Agf with access to O that decides L in polynomial lime.



Noisy circuits and noiseless bounded-depth circuits 1855

Definition A.14 (Noiseless hybrid quantum-classical computation of bounded depth). A noiseless
depth-T algorithm is a NISQy algorithm A that only queries NQC, on sequences of depth-1 n-qubil
unitaries {Ug}r—1, 1 for 1 <T' <T.

Definition A.15 (BPPRN), Let f: N — N be a nondecreasing function. A language L C {0,1}*
is in BPPANCL/(n)] if there is a noiseless depth-f(n) algorithm A thal decides L in polynomial

time. Whenlf(n) = ()(lngi(ﬂ)),lme denote this class by BPPANC'  We also define BPPANC 2
LJI‘E(}BPPQNCI )

Note that BPPRN¢ is contained in the class BQP, as BQP can implement arbitrary polynomial-depth
quantum computation.

We can also define noiseless depth-T" algorithms with access to a classical oracle, as well as
relativized versions of BPPRNC" which we denote by (BPPQNCT )?, completely analogously to what
is done in Section A.2.



Tree representation
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Figure 2: Ilustration of the tree representation for NISQ algorithms. (a) At every memory state u
of the classical computer /algorithm, it could ecither make a noisy circuit query or a classical query.

(b) The tree representation with a mix of noisy circuit queries and classical queries.

13/55



Tree representation 1455

Definition B.1 (Tree representation for NISQ algorithms). Given oracle O : {0,1}" — {0,1}™, a
NISQy algorithm with access to O can be associated with a pair (T,.A) as follows. The learning tree
T is a rooted tree, where each node in the tree encodes the transcript of all classical query and noisy
quantum circuit results the algorithm has seen so far. The tree satisfies the follounng properties:

. Em:fi node u 1s associated with a value po(u)|corresponding to the probability that the transcript
observed so jar is gien by the path Jrom the root v to u. In this way, T naturally induces a
distribution over its leaves. For the root r, po(r) = 1.

e At cach non-leaf node u, we either classically query the oracle O at an input x € {0,1}", or run
a A-noisy quantum circuit A with access to O.

(i) Classical query: u has a single child node v connected via an edge (u,x, O(z)), and we define

po(v) = po(u).

(ii) Noisy circuit query: The children v of u are indexed by the possible s € {0, l}”’ that could
be obtained as a result. We refer to the edge between u and v as (u, A,s). We denote by
|00 (A)) the output state of the circuit so that the probability of traversing (u, A,s) from
node u to child v is given by | (s|po(A)) |?2. We define

po(v) = po(u) - | (slpo(4)) |*.

e If the total number of classical A ueries to O made ﬂ.Eond any root-to-leaf path is at mﬂstl
N, we say that the query complexity of the algorithm 1s at most N.|




Tree representation and upper bound of TVD 19155

Lemma B.2. Given learning tree T corresponding to a NISQ) algorithm with query complexity N,
suppose T’ is a learning tree obtained from T as follows. For every node u at which a noisy quantum
circuit A is run, replace A by anﬂfhﬁ’r circuit A’ such that the new induced distribution over children
stribution g al variation. Then the distributions over

of u 1s at most -far
leaves of T and T' ard at most eN-far in total variation.

Proof. Consider the scquence of trees T where T = 7 and T is given by taking all u in
layer 7 of 701 that run some noisy quantum circuit A and replacing them with the corresponding
circuit A’ from 77. By design, TW) = 7. Let p®®) denote the distribution over leaves of 7). Tt
suffices to show that drv (p{“'}, p{?:_”) <e.

Note that p(t—1) specifics some mixture over distributions p,, where p, is the distribution over
leaves conditioned on reaching node v in the i-th layer. In particular, in this mixture, v is sampled
by sampling parent node u by running the NISQ algorithm corresponding to 77 for 2 — 1 steps and
then running the corresponding quantum circuit A from 7. In contrast, p{ﬂ is a mixture over the
same distributions p,,, but v is sampled by running the NISQ algorithm corresponding to 77 for
1 steps and then running the corresponding quantum circuit A’ from 77. These two distributions
over v are at most e-far in total variation, so the two mixture distributions are also at most e-far
in total variation as claimed. Il



Le Cam’s theorem: complexity and TVD e

Our lower bounds will be based on Le Cam’s method— see Section 4.3 of [48] for an overview
he tree formalism of Definition B.1. In every case we will reduce to some

distinguishing task in which the algorithm must discern whether the oracle it has access to comes
from one tamily of oracles or from another. For example, for unstructured search, the distinguishing
task will be whether the oracle corresponds to some element in the scarch domain or whether the

oracle is the identity channcl.

Lemma B.3 (Le Cam’s two-point method, see ¢.g. Lemma 4.14 from [48]). Let {O;}ies, and
{O;}ics, be two disjoint sets of oracles. Given a tree T as in Definition B.1 corresponding to a
NISQ algorithm that makes N oracle queries, let p; denote the induced distribution over leaves when
the algorithm has access to O;. If dry(Eiwp,[pol, Eiwp,[p1]) < 1/3, there is no algorithm A that
maps transcripts T' corresponding to leaves of T to {0,1} which can distinguish between Sy and Sy
with advantage 1/3.1



Quantum query complexity lower bounds via hybrid argument ~ '"”/**

B.2 Basic hybrid argument

Here we describe a standard template for showing quantum query complexity lower bounds via a
hybrid argument.

Lemma B.4. Lel &), &1 be quanium channels on n qubils such that for all pure stales o, we have
1(Eo — E1)|o]||ler < e. Let A be any depth-T' quantum circuil with access lo one of the two channels,

and let s € {0,1}" be the random siring oulpu TCUL 1 denote the distribution
over s when A has access to &, E; respectively. | Then dpy(pg,p1) < eT.




Quantum query complexity lower bounds via hybrid argument ">

Proof. Let £ = & for s € {0,1}, and define the channel U; which acts by U;(c) = UicrU;r where
U; is an associated unitary operator. We proceed via a hybrid argument. The output state of the

circuit is given by
o =UroEo---oldyo& olhh[|0"XK0"|]

for some unitaries Uy,...,Ur. For s =1 —sand 1 <¢ < T define

ﬂ_(!) éHTOSgD -*+{)Z,{li|1 {:}85 DH.iDEG***OHE DEDH]_“[]H}{[JHH -

Then

A
lo® = 0" |lu =

T a " T a a
Z oD _ gD < Z |o® — o=,
i—1 o =1

T
<) (€ —E)oliroEo---olUp o0& oUy[[0™){0]||er < T supl|(€ — &s)[o]|ler,
i=1 7

where the supremum is over all density matrices. By convexity of the trace norm, this bound still
holds when the supremum is restricted to pure states . By assumption, the above quantity is 7T'.
The total variation distance between p; and ps as defined in lemma statement is simply the L,

. . Y . . N
distance between the diagonals of ¢° and ¢° , which is upper bounded by || — % ||ty < €T ]



Super-polynomial oracle separation between BPP and NISQ 1953

Theorem C.1 (Restatement of Theorem 2.2). BPPP! C NISQY! relative to a classical oracle Oy .

Our basic strategy is Lnlﬂ%ﬂfy the Simon’s oracle into a new classical nraclelﬂuch that the new
oracle is robust to noise. ¢ note that a NISQ algorithm 1s unable to implement known fault-
tolerant quantum computation schemes that can run for any arbitrary quantum circuit with a
polynomial number of gates. However, we will still take inspiration from a fault-tolerant quantum
computation scheme [53] to define a certain|“robustified Simon’s oracle” felative to which we obtain
a super-polynomial separation between BPP and NISQ. As we will show, because the fault-tolerant
scheme of [53] is robust not just to local depolarizing noise but to arbitrary local noise occurring
with sufficiently small constant rate, the NISQ algorithm that we give will ultimately be robust
under this stronger noise model as well (see Remark C.19).




“Robustified” Simon’s problem 20155

C.1.2 Robustified Simon’s problem

Yiven a large enough integer n, we consider Simon’s problem over n' = 20(08(n)°) hits for a constant,

0 < ¢ < 1. Here 1/¢ corresponds to the constant ¢ from Theorem 10 of [53]. We consider

= O(loglog(n')) and encode each of the n’ bits using m" bits. Because m = (1), we have
m™n' = 20008()) < for large enough n.

Given a classical function f, : {0,1}" — {0, 1} from Hlmnnq problem with secret string

s € {0,1}", we define a classical function I {0,1}* — {0,1}™™ as follows. Let = be an n-bit

string. We focus on the first m™n’ bits of z and divide them into n’ m”-bit strings as z1, ..., Ty .
We first define f“ 0,1} — {0,1}" as follows,

(7)

o™ otherwise

fﬁ(T} {rr‘;(bl b)), AL Aby, .. by €40,1} s.t.x; € AE],V’F =1,....7, |

* - * T T #* * *
We use 3! to denote “there exists a unique choice”. Because AE}) and Ag) are disjoint, there
either exists a unique choice of by,...,b,s or does not exist any choice of by,...,b,s that satisfies

L € Ag:},h"i = 1,...,n'. Letting [fﬁ( :)|x denote the kth bit of f“( 2), we define the function
fs:{0,1}" = {0,1}™" by



“Robustified” Simon’s problem £1/ss

. . . T r . s a
We use 3! to denote “there exists a unique choice”. Because AE,) and Ag) are disjoint, there
either exists a unique choice of by,...,b,s or does not exist any choice of by,...,b,s that satisfies

Ti € Ag:},h"*i = 1,...,n'. Letting [E}(T)]k denote the kth bit of E‘(m], we define the function
fs {0, 1} = {0, 1} by

fs@) = | [B@)h S @ B @ @) | € {0,117 (8)

o

e Tt
m’ times m" times

The function }:; can be considered as the robust version of f;, where the output bitstring is stable
over a large number of bitstrings.
Let Uf be the unitary from Eq. (9).

Uz |z} ly) = |z) [y & fs(z)), Vze{0,1}"ye {01} (9)

We denote by O 7. the oracle which applies this unitary. Then we have the following theorem, which
is the main result of this section and implies Theorem 2.2:
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We denote by ( ) = the oracle which applies this unitary. Then we have the following theorem, which
is the main mqult of this section and implies Theorem 2.2:

Theorem C.7. For A sufficiently small, there is a NISQ) algorithm which, given oracle access
to ();? can determine whether f[s is 2-to-1 or 1-to-1 with constant advantage in time al most

I O( poly n) IB?; conlrast, any classical algorithm with access to Of. TPQH?TFI £Eeas.-‘,ﬂ(ﬁupf:rpnly(n))I
time, Lo dP."FrmmF whether [, is 2-to-1 or 1-to-1 with constant advantage.

us, relative to oracles
O of this form, BPPY C NISQY.
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CSS Code and Codeword

C.1.1 Recursively-defined concatenated code

We consider a Calderbank-Shor-Steane (CSS) code built from two classical lincar codes Cp, Csy,
where C; £ C is a punctured doubly-cven self-dual code and Cy £ C1 (we refer the reader to [53]
for background on these notions). We consider C, Cs to be over m classical bits. The corresponding
CSS code encodes a single logical qubit into m physical qubits. Let 14, denote the all-ones vector
of length m (when the subscript is clear from context, we will omit it). The two code words in the
CSS code are given by

, 1 , 1
|‘5ﬂ) - \/(T—J_ Z |w} ) |‘~51} - \/(,,—J_ Z |1”{D ]-m}: (2)
1= weC+ IC- weCt
where @ denotes addition over Z5* (i.c., it is the bit-wise XOR). Denote by d the number of errors

that can be corrected by the CSS code. The two parameters m and d are both considered to be
constant. We define

Apg £ {m O T

A = {w({}m‘w{:(ﬂ‘ﬂ)l,m[ {0,1}™, |z| Ed}, (4)

we Ct iz e {0,1}™ |z < d‘} (3)

where C @ 1 denotes the set {x @ 1|z € C1} and |z| is the number of 1’s in z.

Lemma C.2 (Disjointness of Ag and A;). With the above definitions, we have

ApnN Ay = 0. (5)



Definition C.3 (Basis of the concatenated code). Forr =1, Blg]) 2 Ct and B{” £Ct®1. For
r > 1, we define B{gﬂ, Biﬂ recursively,

BY 2 {(n, . vm) € 0,1 |w e CHyu € BET,Vi=1,.. m},
B 2 {(n,.yom) € 0.1 |we Ct @ L € BETD, Vi1, m}.

The two code words in the recursively-defined concatenated code are then given by
1

3
|Bb |:.':EBE"}

For cach r, we also define two sets A‘(;), Agﬂ over m”-bit strings that correspond to the neighbor-
hoods around Bér), B%r] induced by errors.

Ry = be {0,1}. (6)

Definition C.4 (Neighborhood of BS”, B{"). Forr =1, A" 2 Ay and A1V 2 A,. By Eq. (5),
A‘gr) N Agﬂ =0. Forr > 1, we define Aér}, AET} recursively,

AP 2 {1, vm) € {0,1™ |wo € €m0 € (0,1}, fool < d,vi € AGY Vi sit. i = 0},

AP 2 {(‘1’1, - om) € {0, 1™ |*w1 €Cr®1,x1 € {0,1}™, |21] < d,v; € ALY Vi s.t. 21; = [}} :




Lemma C.5 (Structurc of AI[JT) and A&r)). For all v > 1, we have

A0 91— AD.

Proof. We consider a proof by induction on r > 1. By definition of Ay and Ay, we have A'gl} D1 =
Agl), which establishes the base case of r = 1. For r > 1, we show that for any (vy,...,v,) € [r},
we have (vy,...,v,)®01 € Agr}. Consider wy, g corresponding to (v1, ..., vy ). Using v; € AE:,:; D for
all 2 with zp; = 0 and the inductive hypothesis that Aigr_lj b1 = A':lr_l}, we have ;@1 € Agﬂ:&;] for
all # with zg; = 0. Hence, by considering wy = wo® 1 and 21 = g, we have (v1,...,v5,) D1 € Agr}.
Similarly, we can show that for any (vq,...,v,) € Agr}, we have (v1,...,v,) D1 € AE—,T}. Therefore,
we have shown that A,gr} d1l= Agﬂ. Il

Lemma C.6 (Disjointness of Af]ﬂ and A[lr]). For all v > 1, we have

A 0 AP = 0.




Oracle separation between BPP and NISQ proof 1 A

C.1.5 Proof of super-polynomial separation between NISQ and BPP

We are now ready to complete the proof of the oracle separation between NISQ and BPP.

Proof of Theorem 2.2. Let us decompose our total Hilbert space H as H ~ Hmain,1 ® Hmain,2 @
Hﬂ]‘.’ll:? 1 ® ?{m{;, 2 Whﬂl‘ﬂ

Hmain, 1 =~ ({C'E]@(mrn!): Hmain, 2 = (Cz)@]{ﬂ m"n")j Hane, 1 = (Cg)ogl(mrﬂ!], Hone. 2 ~ (CZ)QG{I’HIY{”)}_

We begin with a state on H initialized in the all-zero state. By Lemma (C.15, we can prepare
a state p on Hp,,in 1, using the ancillas on H,,c 2, such that p is (r,d/2)-deviated from PP =
yen’ gen'|gnyon' | H®n' (V@) By Lemma C.16, we can prepare a state o on Hanc, 1, using the
ancillas on Hane, 2, such that o is (r, d/2)-deviated from ¥ = ver |on' o' (Ve

At this point in the algorithm, our qubits on ?{m;ﬁn,g are no longer i the all-zero state due
to the local noise. We do not care what the state is and suppose that the state is given by p{z}.
We proceed by applying our oracle unitary U 7 to (p® pw)) ® o on Hmain,1 ® Hmain,2 @ Hane, 1-
Since the oracle unitary acts as the identity on Hmpain, 2 by construction, we can equivalently just
apply U e to p ® o on Hmain,1 ® Hane, 1. Doing so and subsequently neglecting the H.ne, 1 register

(corresponding to tracing out the qubits), we obtain



P = e, {Up (02 )L}
But by Lemma C.18, this state is only (r, d/2)-deviated from
pl — trﬂm:c, L{Uf:(ﬂﬂ ® JH)U}m} ) ‘

If fs is a 1-to-1 function, then

[ 1 y
p=ver oo S lael | e

zE[ﬂ,l}“"

whereas if [ is a 2-to-1 function we have

p=ver (L %(|z}+|z$s))- (] + (= @ 5]) | (V&)

Nia
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where s is the hidden string. Applying Hadamards to the encoded qubits of p’., measuring in
the computational basis, and applying classical post-processing via recursive majority vote as per
Lemma C.17, we will obtain an n’ bit string zy which with probability 1 — @(1/n) is sampled from
the distribution D defined as follows. If f; is 1-to-1 function then D will be the uniform distribution
over n’ bit strings, whereas if f; is a 2-to-1 function then D will be the uniform distribution over
n' bit strings subject to the constraint zg - s = 0 (mod 2).

If we repeat the entire procedure n’ times, then with probability (1 — O(1/n"))™ = Q(1) we
obtain n’ such bit strings zq, 21, ..., Zy_1. If this event, call it £, happens, then by solving the n’
linear equations z; - s = 0 (mod 2) for i = 0,1, ...,n" — 1, we can determine whether s is the all-zero
string meaning [ is 1-to-1, or some non-trivial string in which case [ is 2-to-1. In general, if £
does not happen and we have obtained some arbitrary string s, we can check that this situation is
the case by querying the classical oracle at fs(0) and fs(s). So by repeating the entire procedure
O(log(1/4d)) times, with probability at least 1 — d the event £ will happen at least once, and we
will be able to determine if f; is 1-to-1 or 2-to-1. []




Definition C.8 ((r, k)-sparse set). An (r, k)-sparse set of qubits over many blocks of the m” qubits
1§ defined recursiwvely as follows. A set A of qubits over many blocks of m qubits is (1, k)-sparse if
and only if every block has at most k qubits that are in A. A set A of qubits over many blocks of
m" qubits is (v, k)-sparse if and only if for every block, by treating the m" qubits as m sub-blocks of

m" 1 qubits, there are at most k sub-blocks that are not (r — 1,k)-sparse.

Definition C.9 ((r, k)-deviate). A state p s said to be (r, k)-deviated from p' if k is the minimum
integer such that there exists an (r,k)-sparse set of qubits A, such that pac = p'yc. Here, we denote
pac to be the reduced density matriz of p on the qubits not in set A.



(noiscless) quantum circuit ¢ with 2n’ input qubits, depth ¢, and v locations. Let €' be a quantum
computation code with gates G that corrects d errors. Let

V:C? - (CH)®™

be the encoding map for the code given by recursively concatenating C' a total of r = O(log log(v/6))
times. Using key lemmas for cstablishing the threshold theorem from [53] (Theorem 10 therein),
we can cxtract the following two results:
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Theorem C.12 (Lemma 8 and 10 from [53]). There is an absolute constant A, € [0, 1] such that
for any A < A, there exists a A-noisy quantum circuit () which can initialize ancillary qubits at
any time (these ancillary qubits are also subject to qubit-wise noise of \) during the computation

and satisfies the following. ) operates on m™n’ qubits and has depth O(tpolylog(v/é)), and the
output state p of Q' is (r,d)-deviated from

Ve QUM (0 QT (V)T

with probability 1 — & over the local noise.

Theorem C.13 (Lemma 8, 9, and 10 from [53]). There s an absolute constant A; € [0, 1] such that
for any A < A, there exists a A-noisy quantum circuit Q" which can initialize ancillary qubits at any
time (these ancillary qubits are also subject to qubit-wise noise of A) during the computation, and
a classical postprocessing algorithm A based on recursive majority vote, that satisfies the following.
Q' operates on m"n' qubits and has depth O(tpolylog(v/d)). Let o be any n'-qubit state. Let D
be the n'-bit string distribution generated by measuring QoQU in the computational basis. For any
state p that is (r,d)-deviated from

Ve g (ven)t,

applying a A-noisy computational basis measurements on the output state of () given input state p,

followed by the classical algorithm A, produces a distribution D' equal to D with probability 1 — &
over the local noise.
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Lemma C.15. Suppose n’ < exp(log®n) for 0 < ¢ < 1 a sufficiently small constant. There exists
an absolute constant A, € [0,1] such that for any non-negative A < A, there exists a A-noisy
quantum circuit which operates on n' wmput qubits and poly(n) ancillary qubits and has polylog(n)

layers, such that with probability at least 1 — O(1/n") over the local noise, the output state is
(r,d/2)-deviated from the state

yen’ gen’ mn" }{ﬂn" | e (V@eﬂ’)T (10)

for r = loglog(n').

Lemma C.16. Suppose n’ < exp(logn) for 0 < ¢ < 1 a sufficiently small constant. There ezists
an absolute constant A, € [0,1] such that for any non-negative A < A, there exists a A-noisy
quantum circuit which operates on n' wmput qubits and poly(n) ancillary qubits and has polylog(n)

layers, such that with probability at least 1 — O(1/n") over the local noise, the output state is
(r,d/2)-deviated from the state

V@n’ |0n" ) (ﬂn" | (V@nf ) 1]

for r = loglog(n').

Lemma C.17. Suppose n’ < exp(log®n) for 0 < ¢ < 1 a sufficiently small constant and for
r = polylog(n'). There exists an absolute constant A\, € [0,1] such that for any non-negative
A < A, there exists a A-noisy quantum circuit Q' which operates on m™n' input qubits and poly(n)
ancillary qubits and has polylog(n’) layers, such that the following holds. Let A be the classical
post-processing procedure based on recursive majority vote from Theorem C.135.

For k satisfying k < d, let input state p be (v, k)-deviated from the state

VO (Ve
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First, recall the unitary U 7o from Eq. (9). Note that by construction, _F.; only depends non-
trivially on the first m"n’ < n bits of its input. By defining _ﬁ‘ : {0, 1} 5 {0,1}™" to be the
function f, restricted to the first m"n’ bits, we can rewrite (9) as

Us 1) |22) |y) = |z1) |22) [y © F3 (1)), Vax € {0,1}™™, 25 € {0,137, y € {0,1}™™.

We sece from the above equation that U = acts trivially on the |z3) part of the input state. So let
us define U = as the restriction of U = tD its |z1) and |y}, subsystems, namely

Uz, |e1) [y) = |21) [y © 5 (1)), Vo € {0,1™™, y € {0,1}™™"

With the above notations for the oracle, we can now prove the following lemma showing the classical
function f} preserves the deviation metric. We note that, on the other hand, the ordinary Simon’s
function f; does not have the same property.

Lemma C.18 (Stability of the robustified classical oracle). Consider a Hilbert space H which

decomposes into subsystems as H ~ 'Hmain}l ® Manc,1 where Hpyain, 1 > {Eﬁ)@-(mrnr} and Hape,1 ~
(C2)8(m™) - Further let p° = VO HE [07) (0™ |H®™ (VO™) and o© = V&' |0™) (0™ |(VE)L.

Given any k < d, if p ® o is (r,k)-deviated from p° @ o°, then try,, {U~ (p@ar)UT }

(r, k)-deviated from Iy, .. 1{ U Iz (ﬂ" & Jn) U} : } '
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“Lifted” Simon’s problem for NISQ and BQP

C.2 NISQ vs. BQP

In this section we show an oracle separation between NISQ and BQP via a simple “lifting” of Simon’s
problem. In fact, we will actually be able to separate NISQ and BPPANC relative to this oracle.
We begin by describing the modification of Simon’s problem we will consider. For n € N, given
a function f : {0,1}" — {0,1}", we define the lift of f to be the function f : {0,1}*" — {0,1}"
given by

o @ Tn) gt @20 =0
(0 otherwise -

xiven lifted function f, we will abuse notation and let O 7 denote both the classical oracle given by

evaluating [ as well as the quantum oracle

—

O :|z) [y) = |z} [y & f(z)) .

It is not hard to see that in the absence of depﬂnlarizing noise, a minor modification of Simon’s
algorithm, which can be implemented in BPP®NS" still works under this lifting. In contrast, for
NISQ algorithms, we show the following:

Theorem C.20. Let A € [0,1]. Any NISQ, algorithm which, given oracle access to (’}f for any

lift of a function f : {0,1}"™ — {0,1}"™ which is either 2-to-1 or 1-lo-1, can determine whether f
is 2-to-1 or 1-to-1 with constant advantage must have query complezity at least exp(§2(An)). Thus,
relative to oracles O of this form, NISQ® C BQPY.
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Proof of Theorem C.20. Let T be the learning tree corresponding to a NISQ, algorithm that makes
at most N classical or quantum oracle queries to O 7> as in Definition B.1. By Lemma B.2 and
Lemma C.22, if we replace every noisy quantum circuit A in the tree with a noisy quantum circuit

leaves of 7 is at most N2 exp(—(An))-far in total variation from the original distribution PO for

N = exp(o(An)), this quantity is o(1). For convenience, denote this new distribution by ;0}.

1o apply Lemma b.5, we wish to bound dTv{Ef 1_t&1|p'f],Ef g_tt}1|;n}|}. butl note that because
the quantum circuits A’ in the new learning tree are independent of the underlying function f, the
learning tree is simply implementing a randomized classical query algorithm. We can thus think of
;n’f as a mixture over distributions ;nj'," each corresponding to some fixing of the internal randomness
r of the algorithm (here the coefficients of the mixture are independent of f). It thus suffices to

bound sup,. dTV(]Ef 1_t,{,_1[}9’}"],IEZf Z—to—l[p}rl)'
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Henceforth fix any r. The rest of the argument follows the standard proof of the classical lower
bound for Simons’ algorithm. The algorithm queries the classical oracle at some deterministic
sequence of inputs x1, ..., x,, which we may assume without loss of generality are distinct and lie
in 2. For any ¥, ...,%, which are all distinct, (z1,%1), ..., (%4, ys) and r determine some leaf node

¢ of the tree. The pmhahlhty of this leal node under IE‘,J; L ml[ﬁﬂf] is &9 5hd under Ef 2 t[}l[pf])

em)r
is 2::"41 {‘:‘}(zﬂﬁ}! where M £ 2" — 1 — |{z; @z |1 <i<j<a}|. Foranyuy,...,ys for which there

is a collision, the probability of the corresponding leal node under E¢ 1_t[}1[p’:}" | is clearly 0. We
conclude that the total variation between these two mixtures is upper bounded by the probability

that there is a collision among f(z1),..., f(z,) for a random 2-to-1 function f. The latter is at
most

a—1 i 9

> < g
21 () S P2

so for a < 2™/2, this quantity is o(l].‘As min(exp(2(An)), 2%2) = exp(£2(An)),|the theorem thus
follows by Lemma B.3. ]

Remark C.23. The reader may observe that apart from the classical lower bound for Simon’s
problem, our proof of the lower bound in Theorem (.20 makes very little use of the facl that [ is
either a 2-to-1 or 1-to-1 function. In fact, the above arqument shows more generally that for any
search problem over a family of Boolean funclions, the query complexily of any NISQ algorithm is
essentially given by the classical query complexity for that problem.



Lemma C.21. Givenn' € N, let §) denote some subset of {0, 1}“’, and let I1 denote the projection
to the span of {|z)}zcq. Then for any X € [0, 1] and any n'-qubit state |1),

tr(IDS™ [14) (W) <sup Pr [a €, (14)

where the supremum is over probability distributions over {{],1}“', and a is the random siring
obtained by flipping each of the bits of a independently with probability A/2.

Note the probability on the right-hand side of (14) is exponentially small when Q C {0, 1}2" is the
set of strings x for which z,41,..., 29, = 0. We will now use this to show that the distribution
over measurement outcomes from running a noisy quantum circuit that has query access to cither
0 For the identity oracle Id gives very little information about which oracle the circuit has access

to.
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Lemma C.22. Let A be any A-noisy quantum circutt which makes N oracle queries. If Py (respec-

tively pia) is the distribution over the random string s output by the circuit when the oracle is (Jj;
(respectively the identity oracle 1d), thmi dqv{pf, Pia) < N exp( ﬂ()m}).l

Proof. Let n' denote the number of qubits on which A operates. For convenience, we denote by 0O 7
the channel given by pre-composing Of with Df‘ﬂ”. We will show that for all n’-qubit pure states
a, ||{Of® D?“I_S” Df"‘nrj[a]"tr is small so that we can apply Lemma B.4.

When © C {0,1}?" is given by all strings whose last n bits are 0, then for any a € €, if @ is
obtained by flipping cach of the bits of a independently with probability A/2, then Prla € 1] <
(1 —A/2)" < exp(—An/2). So by Lemma C.21, if Df’”;[n] = 37 i |vi) (wi], then 37, || |2 <
exp(—An/2), where IT' is the projection to the span of {|z) |y) |T”}}mesl,y&{n,l}ﬂ,we{n,l}ﬂ’—“ﬂ' If we

write cvery v; as Zﬂ:t’:{0?1}2“,3;&{(},1}“,1.::!(:{[],1}“"”“ Vizyw |T) |y) |w), then

Z}.i Z uﬁz,y,wicxp( An/2).
i

relly,w



TVD upper bound between non-trivial and identity oracle

In particular,

I(OF ®1d — Id){|v:) (villller
< V2||(05 @ 1d — 1d)[Jvs) (willll
1/2
< 2\/5( Z T}Emiy,wﬂiﬂ?yr‘mr)

aefl or ey wan'

2 (1- Y ) <1 [ T

relly,w relly,w

By Jensen’s inequality, we can bound ”(6f® Dfm’_gﬂ D?”r)[ﬁ J|ler by

4y "N wwgal\/z,x V2w < doxp(—An/d).
i

xelly,w el y,w

By taking the channcls £ and &£, in Lemma B.4 to be 6f® D?”LH“ and Df“r, we obtain the
desired bound on drvy {p;;, Pid )- ]
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D Unstructured Search

In this section we show that there is no quadratic speedup for unstructured search in NISQ. Given
d € N and ¢ € [d], we abuse notation and let O; denote both the classical oracle O; : [d] — {0,1}
given by O;(z) = 1|z = 1] as well as the quantum oracle

0; [z} [w) > (—1)" [2) |w) ¥ 2 € [d].

Theorem D.1. Let A € [0,1]. Any NISQy algorithm which, given oracle access to O; for any
i € [d], can determine i with probability 2/3 must have query complexity at least 2(dN).
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Proof of Theorem D.1. Let T be the learning tree corresponding to a NISQ algorithm which has
access to O; for some 0 < i < d and has query complexity N, as in Definition B.1. Let T be some
choice of depth that we will tune later. We will convert 7 to a learning tree T corresponding to a
bounded-depth noiseless NISQ algorithm, as in Definition D.2.

Define T as follows. For every non-leaf node wu, if the algorithm makes a single classical query
at input j, then replace the edge (u, x,O;(x)) to its child v by an edge (u, A, s) where A is a depth-
1 quantum algorithm simulating the classical query. On the other hand, suppose that at u, the
algorithm runs some A-noisy quantum circuit A on poly(d) qubits. If A makes fewer than T oracle
queries in total, then consider the noiseless quantum circuit A’ which simulates A by applying
depolarizing noise at each layer. If A makes more than T queries, then replace A with the quantum
circuit A’ that simply measures the maximally mixed state in the computational basis, rather than
the output state |p;(A)). By Lemma D.16 and Pinsker’s inequality, the total variation distance
between the induced conditional distributions on children when |¢;(A)) gets measured versus when

the maximally mixed state gets measured is at moeIL \/ %Iﬂqﬁi(fl]}), |ar1d by Lemma D.15 this is at

most |(1 — A\)T/2 . O(y/Iog d).
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Let p; (respectively p;) denote the distribution over leaves when running the NISQ algorithm
given by T (respectively the noiseless algorithm given by ’?} As the number of oracle queries
is at most N, the depth of both trees is at most N, so we conclude that the total variation
distance between p; and p; is at most N(1 — \)T/2. O(y/logd) by Lemma B.2. We will take
T = CA l(log logd + log N) for constant C' > 0 so that this quantity is an arbitrarily small
constant.

We conclude by Theorem D.4 LhaIJ if N < cd/T I: O(d\/(loglogd + log N)), then the NISQ
algorithm given by T cannot solve uns tured search with probability 2/3. This concludes the

proof of our €2(d\) lower bound. n




Upper bound on the information in NQC HEHEE

D.3 From bounded-depth to noisy computation

We now show how to extract from Theorem D.4 a lower bound against NISQ. We begin with
the following basic lemma, a proof of which we include in Appendix H.1 for completeness, that
quantifies the amount of information that is lost from running many layers of noisy computation:

Lemma D.15 (Le
output state p. The

15y depth-T' quantum circuit on n qubits unth
S(p) < (1 — X7 - n,|where S(-) denotes von Neumann entropy.

I(p) £ n

We will also use the following standard operational characterization of I(p):

Lemma D.16 (Sce c.g. Lemma 2 from [87]). Given any n-qubit state p and any POVM, the
distributions p, q induced by respectively measuring p and I /2™ with the POVM satisfy KL (p||q) <

Z(p).



Upper bound on the information in NQC A

Given S C [n] and mixed n-qubit state o, let o|g denote the restriction of o to the subsystem
indexed by S. That is,

o1 = (tr(crh,-n) . Uzmﬂg ® ols. (22)

Proof. Von Neumann entropy is invariant under unitary transformation, so it suffices to show that
for any mixed state o, I(Dy[o]) < (1 — A) - I(o). Because Dy [o] = Es~p[ois] for p the distribution
over S C [n] which includes cach clement of [n] independently with probability A. So by concavity
of entropy, additivity of entropy for tensor products, and (22),

(CNTED SECRIEPVND DI GEED 91 () |2t (RPN RV )
k=0 k=0

SC[n]:|S|=k

where in the last step we used Lemma H.1 below. []

The proof above uses the following fact:

Lemma H.1 (Lemma 7 from [87]). For any density matriz o on n qubits and any 0 < k < n,

(:)_1 2 I(o]s) < —~1(0).

SC[n]:|S|=k

o



Lower bound on the bounded-depth computation #3/55

Lemma D.3 (Eq. (7) in [91]). For any quantum circuit A for unstructured search that makes T
oracle queries, if |¢;(A)) denotes the output state when the underlying oracle is O;, then

d
> llbi(A)) — lo(A))|? < 4T,
i—=1

D.2 Lower bound against bounded-depth computation

We now use these tools to prove the following query complexity lower bound. This will be the main
componcent in our proof of Theorem D.1.

Theorem D.4. There is an absolute constant ¢ > 0_for which the following holds. Let d. T € N
with T' < d. Then no noiseless quantum algorithm of depth T with query complezxity at most cd/T
can, given oracle access to O; for any i € [d], output v unth probabilaty 2/3.
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Example 2: Bernstein-Vazirani !

E Bernstein-Vazirani Problem

In this section we show that a NISQ algorithm can solve the Bernstein-Vazirani problem [92| with
O(logn) queries, whereas it is known that any classical algorithm requires ©(n) queries. As with
the upper bound in Section C.1, we will show that our algorithm is robust not just to local depo-
larizing noise, but also to arbitrary local noise that occurs with sufficiently small constant rate (see
Remark E.5).

We begin by recalling the Bernstein-Vazirani problem on n bits. There is an unknown function
f:4{0,1}" — {0,1} of the form f(x) = s-z (mod 2), where s € {0,1}" is often called the hidden
string. The goal is to determine the hidden string. In the quantum context, the classical oracle is
rendered into a unitary Oy which acts as

O : |2y @ Iy) = ) @ |y @ /()

for |z) a state on n qubits and |y) a state on one qubit. In the noiseless quantum setting, the best
quantum algorithm can find the hidden string s in ©(1) queries [92].
We prove the following result on the NISQ complexity of the Bernstein-Vazirani problem:

Theorem E.1. Let 0 < A < 1/24. Then there is a NISQ) algorithm which can solve the Bernstein-
Vazirani problem with probabilily at least 1 — § using @(ﬁ log(n/d)) queries.
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Proof of Theorem E.1. By Lemma E.4, we see that for each bit 7 of the n output bits, the probability
of being |s;) is at least (1 — \)%, which happens if the ancilla qubit is never corrupted in either
of the two layers of noise prior to the application of the oracle (with probability (1 — A)?), and if
additionally the former of the two possible events in Lemma E.4 happens (with probability (1—A)%).
Let f(A) £ (1 — A\)% and note that for A < 1/10, f(\) > 1/2.

Let X; be a random variable which equals zero if s; is obtained correctly with our procedure,
and equal to one otherwise. Letting Y; be the average of M i.i.d. copies of X;, then the Chernofi-
Hoeflding bound tells us that

N1 1 2
Prob (Yim > E) < exp (—ZM (5 _ f(,x)) ) .

This is an upper bound on the probability that if we repeat the Bernstein-Vazirani algorithm M
times and employ the majority votes strategy on the ith site to determine s;, then we will fail. The
probability that we fail for at least one of the n sites is upper bounded by

Prob (m:;m Y; > %) < ;exp (—ZM G - f(}.))z) < n exp (—ZM G - f(A))z) .
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So if we want the right-hand side to be at most §, then we can pick some M such that

M = o( . 1ng(n/5)) . (21)

1
(1—=27f(}))
Since (1 — 2f(A))? is an alternating series in A, we can lower bound it by its first two terms as

(1—2f(A)*>1—24).

Then (21) can be written in a slightly simplified form as

v = (515 10/))

for A < 1/24, as claimed.? O

SWe have not attempted to optimize this threshold for A for general local noise channels or particular choices of
local noise channels. However, we note that with more careful bookkeeping one can show, e.g. when the local noise is
depolarizing noise, that for any A bounded away from 1 the above algorithm can solve the Bernstein-Vazirani problem
with O(log(n/d)) queries.



A g =1
4} el fe (] ]
e

Figure 3: Bernstein-Vazirani algorithm in the presence of arbitrary noise (cach box labeled by “local
noise” denotes that with probability A, an arbitrary, adversarially chosen single-qubit operation is
applied). We have labeled the layers of noise for case of reference in the proof.
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Lemma E.4. If the ancilla qubit is not corrupted prior to application of the oracle in the Bernstein-
Vazirani algorithm, then for every i € [n], with probability (1 — X)* the ith output bit is given by s;
and otherwise is given by a possibly incorrect bit.

Proof. Whe

Figure 3). Further suppose that the qubits are located at ay, ..., ax, where {aq,...,ax; C {1, ...,n}.
Picking some permutation m € S,, such that n(i) = a; for i = 1, ..., k, we can write the state of the
system as

1
3 > Brn(aE|® e ©-)(-|
z,2'€{0,1}F
zx'e{0,1}"—k

for some coefficients {3, .-} satisfying > .. = 1. The rest of the protocol proceeds as follows.
We apply Oy to get

]_ 1
on Y Bep () @ |z)a )t @ |- ) (| (—1) R
z,z'E{lI],l}’“
z.x'e{0,1}"F
Next we trace out the ancilla to find
% Y Bop (1)) (12) (] @ |2) (2 ) (20)
..@*,.e.*"lré{li},l}jTE

zx'e{0,1}—k
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Why (1 — 1) ??

Following this we apply a third layer of local noise, a.pply H®n cmd then apply a fourth layer of
: alrcady corrupted qubits

local noise again. Suppose that thi
at positions aq,...,ax, as well as] £ qubits at positions different from aq, ..., ax.|] Suppose that the
positions of these £ qubits arc agy1, ..., ap1¢ where {ay, ..., @k, Ggy1, .-, @kref C {1,...,n}. Since the
local noise and H®" act qubit-wise, if we only want to track the uncorrupted qubits we can do as

follows: at the outset we trace out the k + ¢ qubits which are to be corrupted, and then we apply
H®™—k=) {4 the residual qubits.

We implement this procedure presently. Defining o € S, by o(i) = a; for i = 1,...,k + £, we
can rewrite (20) as

]. L e

oY B (CDFEIHEY) o) (M @ )| @ )yt
z,2'€{0,1}F

waw'e{0,1}*

yy'e{0,1}m k=t

for some cocfficients {3, .7 u} satisfying Zz,w szww = 1. Letting {b1,...,bp—r—¢} = {1, ...,n} \
{ai,...,aky¢} be the uncorrupted registers, where we choose by < by < --- < by_g_y¢, tracing out
everything but the by, ..., b, ;¢ registers we find the residual pure state

1 :
T il )
on—k—£ y(:{ﬂ%—k—f



where [s]p,,... 6, ., denotes the by, ..., b,_g_¢ bits of the hidden string s. Applying H ®(n—k—t) g

find

s 2 [Cor Tty |
2 y,y’E{ﬂ,l}“—k—!

Finally, measuring in the computational basis, the probability of measuring |[s]y, . 4. ,_,) 15 equal
to one.

All in all, we have seen that if we perform the usual Bernstein-Vazirani algorithm, we obtain the
hidden bit string s but with a fraction of its bits corrupted, corresponding preciscly to the qubits
that were corrupted by one of the four layers of local noise. ]
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F Shadow Tomography

In this section we show that relative to a natural gquanium oracle, there is also an exponential
separation even between NISQ and BPPANC’ | The task we consider that witnesses this separation
has been studied previously in the context of separations between algorithms with and without
quantum memory [37, 48, 50| and is based on shadow tomography, i.e. predicting properties of an
unknown state to which one has access via a state oracle. Informally, for an unknown state p, one
would like to predict [tr( for all Pauli operators I XY Z\®" .

We will show that|{NISQ, algorithms with access to such an oracle require 1/(1 — X)*2(™ kopies
of p to estimate all of these observables to within constant error. On the other hand, existing upper
bounds [37] imply that BPPANC’ algorithms only require @(n) copies of p.

iven copies of




Oracle 0, 24/53

Definition F.1. Let p be an n-qubit state. We consider an oracle O, given as a CPTP map that
traces out n qubits in the state register and prepares the state p in the state register:

I ()p({:r) £ p R trsiate(o), I

for any integer n’ > n and any n'-qubit state o.

For the purposes of showing a lower bound in this oracle model, we will assume that in between
oracle querics, the algorithm can perform arbitrary noiseless quantum computation, and at the end
it can perform a noiscless measurement in the computational basis. The only noise that gets applied
is local depolarizing noise after any call to OJ,. Note that this is a stronger model of computation
than a A-noisy quantum algorithm or a NISQ, algorithm, which merely makes the lower bound we
show cven stronger. Furthermore, as there is no notion of a classical oracle in this setting, it is not
necessary to work with the tree formalism of Definition B.1.

F.2 Exponential lower bound

We are now ready to state the main oracle separation of this section:

Theorem F.2. Leflp = 5 L(I + s- P) for some s € {0,1} Iand n-qubit Pauli operator P. Given
access to the oracle O, mn Defimlion F.1, no NISQ, algorithm can determine either s or P with
constant advantage unless it makes Q2((1 — X))~ ™) oracle queries.

On the other hand, there is an algorithm in BPPANC’ that, given O(n) oracle queries, can
deltermine both s aﬂ,d P with high probability. In facl, even if p is an arbilrary state, there is an
algorithm in BPPANC’ that, given O(n) oracle queries, can estimate |tr(Pp)| for all n-qubit Pauli
operators P lo within small constanl error with high probabilily.
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Lemma F.3. For any A > 0. Let P € {I,X,Y,Z}®". Any NISQ, algorithm that has oracle access
to the slate oracle O, for eilher p = EL(I + P) or p = zif and can distinguish which oracle it
has access to with at least 2/3 probability must make Q((1 — X)~IP1) queries, where |P| denotes the
number of non-identily components in P.

Proof. Suppose the circuit operates on n’ qubits. For convenience, for s € {0,1} denote OL{“ 5-P)
oL .

by O,. We would like to show that for all n'-qubit states o, ||JD®= ”’“()] — Op)la|]|ls is small so
that we can apply Lemma B.4. But note LhaLI[’ar any Q € {X,Y, Z}, D,|Q] = (1 - 2)Q, Iwh{:rcaﬁ
D, [I] = 1. We conclude that
P
Dg"
b

By taking the channels £ in Lemma B.4 to be fo’“r o (J; and D?“! o (Jg, we conclude that no
algorithm given by alternately querying the oracle followed by depolarizing noise, and running
arbitrary noiseless quantum computation, and finally measuring in the computational basis can
distinguish whether the underlying oracle is O or O_ with at least 2/3 probability unless it makes
Q((1 — X)) queries.

As this model is a stronger model of computation than NISQ, (note that there is no notion of
a classical oracle in this setting), this implies the claimed lower bound for NISQ,. ]

P

— (1 — M2
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