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Motivation & Overview

▪ When we say a quantum state is highly complex, we mean there is no easy way to 
prepare the state, but how can we be sure?

▪ By enumerating all the quantum circuits that approximate a specified state…

→ difficult to obtain a useful lower bound

▪ Goal is to strengthen the evidence supporting the cojective below

Most local random circuits of size 𝑇 have a complexity that scales linearly in 𝑇 for an 
exponentially long time

Conjecture 1 (by Brown and Susskind)
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Motivation & Overview
How This Paper Strengthens Conjecture 1?

▪ Random circuits that generate approximate unitary 𝑘-designs necessarily contain many 
unitaries with strong complexity Ω(𝑘).

▪ The distribution over design elements cannot concentrate on a few low-complexity 
unitaries (anti-spikiness).

▪ Therefore, as the design order 𝑘 grows with time, the number and typical complexity 
of unitaries grow accordingly.

→ This provides rigorous evidence for Conjecture 1.
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Let {𝑝𝑖 , 𝑈𝑖} be an approximate unitary 𝑘-design. Then, a randomly selected (according to 
the weights) element is very likely to have strong circuit complexity ≈ 𝑘

Theorem 1 (informal statement)

Let {𝑝𝑖 , 𝑈𝑖} be an approximate unitary 𝑘-design. Then, the associated weight distribution 
cannot be too spiky: max

𝑖
𝑝𝑖 ≲ 𝑘! 𝑑−2𝑘 .

Lemma 1 (anti-spikiness)
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Let {𝑝𝑖 , 𝑈𝑖} be an approximate unitary 𝑘-design. Then, the associated weight distribution 
cannot be too spiky: max

𝑖
𝑝𝑖 ≲ 𝑘! 𝑑−2𝑘 .

Lemma 1 (anti-spikiness)

Any approximate 𝑘-design contains exponentially many (in 𝑘) unitaries that have circuit 
complexity Ω(𝑘).

Corollary 1

N. Hunter Jones shows that local circuits of size 𝑇 = 𝑂(𝑛2𝑘) form approximate 𝑘-designs 
in the limit of large local dimension (Hilbert space dimension 𝑑 = 𝑞𝑛 with 𝑞 large)

The set of all local circuits of size 𝑇 contains at least exp(Ω 𝑇 ) elements with strong 
complexity Ω 𝑇 , provided that the local dimension is sufficiently large: 𝑞 ≥ 𝑞0(𝑇)

Corollary 2
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Untiary designs

Let 𝜈 be a probability distribution defined over a set of unitaries 𝑆 ⊆ 𝑈(𝑑). The 
distribution 𝜈 is unitary 𝑘-design if and only if:

𝔼𝑉~𝜈 𝑉⊗𝑘𝑂𝑉†⊗𝑘 = 𝔼𝑈~𝜇𝐻 𝑈⊗𝑘𝑂𝑈†⊗𝑘 ,

for all 𝑂 ∈ ℒ ℂ𝑑
⊗𝑘

.

Definition (Unitary k-design)



Strong state complexity

▪ Consider systems comprised of 𝑛 qudits with local dimension 𝑞: 𝑑 = 𝑞𝑛

▪ The maximally mixed state: 𝜌0 =
𝕀

𝑑

▪ For any pure state |𝜓⟩⟨𝜓|,
1

2
|𝜓⟩⟨𝜓| − 𝜌0 1 = 1 −

1

𝑑

▪ The optimal measurement is 𝑀 = |𝜓⟩⟨𝜓| and does depend on the state in question

→ Such a measurement may be challenging to implement for states that we assign a 
high complexity to.
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▪ The optimal measurement is 𝑀 = |𝜓⟩⟨𝜓| and does depend on the state in question

→ Such a measurement may be challenging to implement for states that we assign a 
high complexity to.

▪ ℍ𝑑 : the space of 𝑑 × 𝑑 Hermitian matrices

▪ M𝑟 𝑑 ∈ ℍ𝑑: the class of measurements that can be implemented by combining at 
most 𝑟 2-local gates from a fixed, universal gate set G ∈ 𝑈(4).

𝛽𝑞𝑠
# (𝑟, |𝜓⟩) = maximize |Tr(𝑀(|𝜓⟩ 𝜓 −𝜌0 )|

subject to 𝑀 ∈ M𝑟(𝑑)



Strong state complexity

▪

Fix 𝑟 ∈ ℕ and 𝛿 ∈ 0,1 . We say that a pure state |𝜓⟩ has strong 𝛿-state complexity at 
most 𝑟 if

𝛽𝑞𝑠
# (𝑟, |𝜓⟩) ≥ 1 −

1

𝑑
− 𝛿,      which we denote as 𝐶𝛿(|𝜓⟩) ≤ 𝑟.

Definition 2 (Strong state complexity)
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Fix 𝑟 ∈ ℕ and 𝛿 ∈ 0,1 . We say that a pure state |𝜓⟩ has strong 𝛿-state complexity at 
most 𝑟 if

𝛽𝑞𝑠
# (𝑟, |𝜓⟩) ≥ 1 −

1

𝑑
− 𝛿,      which we denote as 𝐶𝛿(|𝜓⟩) ≤ 𝑟.

Definition 2 (Strong state complexity)

Suppose that 𝜓 ∈ ℂ𝑑 obeys 𝐶𝛿(|𝜓⟩) ≥ 𝑟 + 1 for some 𝛿 ∈ (0,1) and 𝑟 ∈ ℕ. Then,

min
𝑠𝑖𝑧𝑒 𝑉 ≤𝑟

1

2
|𝜓⟩⟨𝜓 −𝑉 0⟩⟨0|𝑉†

1
> 𝛿,

i.e. it is impossible to accurately produce |𝜓⟩ with fewer than 𝑟 elementary gates.

Lemma 2 (Strongness)



Strong unitary complexity

▪ Define the complexity of unitary channels 𝒰 𝜌 = 𝑈𝜌𝑈†

▪ The completely depolarizing channel: 𝒟(𝜌) = 𝜌0 =
𝕀

𝑑
for all states 𝜌.

▪ The diamond distance between 𝒟 and any unitary channel is close to maximal:

1

2
𝒰 − 𝒟 ⋄ = 1 −

1

𝑑2

▪ 𝐺𝑟′ ⊂ 𝑈(𝑑2): the set of all unitary circuits on 2𝑛 qudits (register+memory) that are 
comprised at most 𝑟′ elementary gates.

▪ 𝑀𝑟′′ ⊂ ℍ𝑑
⊗2: the class of all two-outcome measurements on 2𝑛 qudits that require 

circuit size at most 𝑟′′ to implement.



Strong state complexity

▪

Fix 𝑟 ∈ ℕ and 𝛿 ∈ 0,1 . We say that a unitary 𝑈 ∈ 𝑈(𝑑) has strong 𝛿-unitary complexity 
at most 𝑟 if

𝛽𝑞𝑐
# (𝑟, 𝑈) ≥ 1 −

1

𝑑2
− 𝛿,      which we denote as 𝐶𝛿(𝑈) ≤ 𝑟.

Definition 3 (Strong unitary complexity)



Strong state complexity

Fix 𝑟 ∈ ℕ and 𝛿 ∈ 0,1 . We say that a unitary 𝑈 ∈ 𝑈(𝑑) has strong 𝛿-unitary complexity 
at most 𝑟 if

𝛽𝑞𝑐
# (𝑟, 𝑈) ≥ 1 −

1

𝑑2
− 𝛿,      which we denote as 𝐶𝛿(𝑈) ≤ 𝑟.

Definition 3 (Strong unitary complexity)

Suppose that 𝑈 ∈ 𝑈(𝑑) obeys 𝐶𝛿(𝑈) ≥ 𝑟 + 1 for some 𝛿 ∈ 0,1 , 𝑟 ∈ ℕ and measurement 
procedures that include the Bell-measurement Ω Ω . Then,

min
𝑠𝑖𝑧𝑒 𝑉 ≤𝑟

1

2
𝒰 − 𝒱 ⋄ > 𝛿,

i.e. it is impossible to accurately approximate 𝑈 by circuits comprised of fewer than 𝑟
elementary gates.

Lemma 3 (Strongness)



Complexity by design - State

Consider the set of (pure) states in 𝑑 = 𝑞𝑛 dimensions that results from applying all 
unitaries associated with an 𝜖-approximate 2𝑘-design to a fixed starting state 𝜓0 . 
Then, this set contains at least

𝑑 + 𝑘 − 1

𝑘

1

1 + 𝜖
− 2𝑑𝑛𝑟 G 𝑟

16𝑘2

𝑑 1 − 𝛿 2

𝑘

distinct states that obey 𝐶𝛿(|𝜓⟩) ≥ 𝑟 + 1 each. Qualitatively, this number is of order 
𝑑

𝑘

𝑘

as long as 𝑟 obeys

𝑟 ≲
𝑘(𝑛 − 2 log 𝑘 )

log(𝑛)

Theorem 2 (State complexity growth)



Complexity by design - Unitary

A discrete approximate 2𝑘-design in 𝑑 = 𝑞𝑛 dimension contains at least

𝑑2𝑘

𝑘!

1

1 + 𝜖
− 3𝑑2𝑛2𝑟 G 𝑟

1024𝑘4

𝑑 1 − 𝛿 2

𝑘

distinct unitaries that obey 𝐶𝛿(𝑈) ≥ 𝑟 + 1 each. Qualitatively, this number is of order 

𝑑2

𝑘

𝑘

as long as 𝑟 obeys

𝑟 ≲
𝑘(𝑛 − 4 log 𝑘 )

log(𝑛)

Theorem 3 (Unitary complexity growth)



Moment bounds

▪ To show most unitaries in a 𝑘-design are complex, we must bound how much 
measurement outcome can deviate from its average.

▪ Markov’s inequality (for nonnegative RV 𝑆)
Pr[𝑆 ≥ 𝜏] = Pr 𝑆𝑘 ≥ 𝜏𝑘 ≤ 𝔼[𝑆𝑘]/𝜏𝑘

∴ The larger the moments we can control, the stronger this assertion becomes.

▪ For state complexity,

Fix a bipartite input state 𝜙 ∈ ℂ𝑑 ⊗ℂ𝑑 and a measurement 𝑀 of compatible dimension. 
Then, 

𝔼𝑈 Tr (𝑀(𝑈⊗ 𝐼)|𝜙⟩⟨𝜙| 𝑈† ⊗ 𝐼 − 𝔼𝑈 Tr 𝑀 𝑈⊗ 𝐼 𝜙 𝜙 𝑈† ⊗ 𝐼
𝑘
≤
𝐶𝑘 𝑘! 2

𝑑𝑘/2

where 𝐶𝑘 =
1

𝑘+1

2𝑘
𝑘

<
4𝑘

𝑘
denotes the 𝑘-th Catalan number.

Theorem 4



Use Theorem 2 and Theorem 3 to analyze concrete models



Local random circuits

▪ Focus on systems comprised of 𝑛 qubits, i.e. 𝑞 = 2 and 𝑑 = 2𝑛

▪ G ⊂ 𝑈(4) be a finite universal gate set containing inverses

▪ Generate G-local random circuits by sequentially applying a random gate 𝑔 ∈ G to a 
randomly selected pair of neighboring qubits. Repeating 𝑇 steps.

▪ Intuitively, the larger 𝑇, the more random the circuit becomes

Fix 𝑑 = 2𝑛, 𝜖 > 0, 𝑘 ≤ 𝑑, and let G ⊂ 𝑈 𝑑2 be a universal gate set containing inverses. 
Then, the set of all G-local random circuits of size 𝑇 forms an 𝜖-approximate 𝑘-design if

𝑇 ≥ 𝐶𝑛 log2 𝑘 2𝑘9.5 𝑛𝑘 + log
1

𝜖
,

where 𝐶 > 0 is a (large) constant which depends on G

Theorem 5

𝑛2𝑘11



Local random circuits

▪ Theorem 3 + Theorem 5

∴ Strong complexity grows as Ω(𝑇1/11)

▪ Lower bound: for 𝜖 ≤ 1/4 and 𝑘 ≤ 𝑑1/2, the size of random circuits on 𝑛 qudits must 
be at least

𝑇 ≥
2𝑘𝑛 log 𝑞

𝑞4 log 𝑘
to form an 𝜖-approximation 𝑘-design

Fix 𝛿 ∈ (0,1), 𝑟 ≤ 2𝑛/2 and set 𝑇 ≥ 𝐶𝑛2
log2 𝑛 𝑟

𝑛

11
. Then, the set of all G-local circuits of 

size 𝑇 contains at least ሚ𝐶2log 𝑛 𝑟 unitaries that obey 𝐶𝛿 𝑈 > 𝑟. Here, 𝐶, ሚ𝐶 > 0 are 
constants that implicitly depend on 𝛿 and G.

Corollary 3 (Polynomial relation between circuit size and circuit complexity for local random circuits

Theorem 3: 2𝑘-design has 
𝑑2

𝑘

𝑘

𝐶𝛿(𝑈) ≥ 𝑟 + 1

Theorem 5: 𝑘-design if T ≥ 𝑛2𝑘11 size local circuit



Relating two conjectures

▪ Fix 𝑞 = 2, 𝑑 = 2𝑛 (𝑛 qubits) and suppose that the aforementioned lower bound were 
not necessary, but also approximately sufficient:

G-local circuits of size 𝑇 ≃
2𝑛𝑘

log2(𝑛)
generate sufficiently accurate approximat 2𝑘-designs

▪ Then, G-local circuits of size 𝑇 contain at least 𝑑2𝑘/ 𝑘! 2 elements with circuit 

complexity 𝑟 ≃ 𝑇. If we assume that 𝑇 ≤
2𝑛

log2(𝑛)
𝑑, then this bound can be simplified 

further as

→ Conjecture 1!!

G-local circuits of size 𝑇 = 𝑂(𝑛𝑘) form approximate 𝑘-designs

Conjecture 2 (Linear growth in complexity)



Linear growth in design at large local dimension

Random quantum circuits on 𝑛 qudits of local dimension 𝑞 form approximate unitary 𝑘-
designs when the circuit size is 𝑇 = 𝑂 𝑛2𝑘 for some 𝑞 > 𝑞0, where 𝑞0 depends on the 
size of the circuit.

Theorem 6

Theorem 3 + Theorem 6



Stochastic and Time-Dependent Models

Continuous-time analogue of random circuits

▪ Time-dependent Hamiltonian with random couplings

▪ Captures chaotic / Scrambling dynamics

Random all-to-all 2-body interactions & Gaussian random couplings

𝐻𝑠 =෍

𝑖<𝑗

෍

𝛼,𝛽

𝐽𝑠,𝑖,𝑗,𝛼,𝛽𝑆𝑖
𝛼𝑆𝑗

𝛽

where 𝑆𝑖
𝛼 is a Pauli operator acting on site 𝑖 with 𝛼 = {0,1,2,3}, 𝐽~𝑁(0, 𝜎2)

Theorem 7

𝐶~1/𝐽

𝑈𝑡 = ෑ

𝑠−=1

𝑡

𝑒−𝑖𝐻𝑠𝛿𝑡



Nearly time-independent Hamiltonian dynamics



Complexity growth and black hole interiors

In AdS/CFT, an eternal AdS-Schwarzschild black hole grows linearly in time (𝑡 ∼ 𝑒𝑛)

Conjecture (Complexity = Volume): 

▪ Quantum complexity of the dual CFT state is the long-time linearly increasing 
quantity which captures the wormhole growth.

▪ Complexity of the boundary TFD state equals the spatial volume behind the horizon

Limits of the 𝒌-Design Approach for Holography

The connection between unitary designs and quantum complexity will likely not inform 
complexity growth in holography as evolution by time-independent Hamiltonian will not 
converge to approximate designs.

→ we need to explore properties beyond the Haar-randomness of the evolution to 
study complexity growth in holography



Strong complexity in the bulk

Claim: Strong definition of complexity is congruent with expectations form the bulk and 
might be more suited for holography than the standard definition in terms of the circuit 
complexity.

𝑂 𝑡 = 𝑒−𝑖𝐻𝑡𝑂𝑒𝑖𝐻𝑡

Switchback effect (complexity growth in holography)

(Traditional) Circuit Complexity Proposed Strong Complexity

Definition Minimal gates to build a unitary Minimal measurement complexity to 
distinguish from maximally mixed state

Switchback Gate cancellations outside the 
operator’s lightcone delay growth

Simple measurements outside the 
lightcone can still distinguish

After 
scrambling

Operators spread over all qubits → 
gates no longer cancel → linear growth

Distinguishing requires global 
measurements → linear growth

Interpretation Circuit cancellation Information access-delay



Strong complexity in the bulk
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Most states have high complexity

Random pure states |𝜓⟩⟨𝜓| behave like the maximally mixed state 𝜌0 in expectation.

Concentration of measure ensures that deviations from this average case behavior are 
exponentially suppressed in concrete instances



Most high-complexity states far apart



Most high-complexity states far apart
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