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Motivation & Overview

= When we say a quantum state is highly complex, we mean there is no easy way to
prepare the state, but how can we be sure?

= By enumerating all the quantum circuits that approximate a specified state...
— difficult to obtain a useful lower bound

= Goal Is to strengthen the evidence supporting the cojective below

Conjecture 1 (by Brown and Susskind)

Most local random circuits of size T have a complexity that scales linearly in T for an
exponentially long time




Motivation & Overview

When we say a quantum state is highly complex, we mean there is no easy way to prepare
the state, but how can we be sure? Perhaps we were not clever enough to think of an ingenious
short-cut that prepares the state efficiently. It’s not possible in practice to enumerate all the
quantum circuits that approximate a specified state to find one of minimal size. For that
reason, it is quite difficult to obtain a useful lower bound on the complexity of the quantum
state prepared by a specified many-body Hamiltonian in a specified time. It is reasonable to
expect that, for a chaotic Hamiltonian H and an unentangled initial state, the complexity
grows linearly in time for an exponentially long time, but we do not have the tools to prove
it from first principles for any particular H.

Omne possible approach is to rely on highly plausible complexity theory assumptions to

derive nontrivial conclusions about the complexity of states generated by particular circuits

or Hamiltonians [8-10]. Another is to consider ensembles of circuits, and to derive lower

bounds on complexity which hold with high probability when samples are selected from

these ensembles. We follow the latter approach here, drawing inspiration from recent work




Motivation & Overview

How This Paper Strengthens Conjecture 17

= Random circuits that generate approximate unitary k-designs necessarily contain many
unitaries with strong complexity Q(k).

= The distribution over design elements cannot concentrate on a few low-complexity
unitaries (anti-spikiness).

» Therefore, as the design order k grows with time, the number and typical complexity
of unitaries grow accordingly.

— This provides rigorous evidence for Conjecture 1.
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Theorem 1 (informal statement)

Let {p;, U;} be an approximate unitary k-design. Then, a randomly selected (according to
the weights) element is very likely to have strong circuit complexity = k

Lemma 1 (anti-spikiness)
Let {p;, U;} be an approximate unitary k-design. Then, the associated weight distribution
cannot be too spiky: maxp; < k!d~2k.

l




Theorem 1 (informal statement)

Let {p;, U;} be an approximate unitary k-design. Then, a randomly selected (according to
the weights) element is very likely to have strong circuit complexity = k

Lemma 1 (anti-spikiness)

Let {p;, U;} be an approximate unitary k-design. Then, the associated weight distribution
cannot be too spiky: maxp; < k!d~?k,
l

Corollary 1

Any approximate k-design contains exponentially many (in k) unitaries that have circuit
complexity Q(k).

N. Hunter Jones shows that local circuits of size T = 0(n?k) form approximate k-designs
in the limit of large local dimension (Hilbert space dimension d = q™ with g large)

Corollary 2

The set of all local circuits of size T contains at least exp(Q(T)) elements with strong
complexity Q(T), provided that the local dimension is sufficiently large: g = q(T)
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Let {p;, U;} be an approximate unitary k-design. Then, a randomly selected (according to
the weights) element is very likely to have strong circuit complexity = k

Lemma 1 (anti-spikiness)

Let {p;, U;} be an approximate unitary k-design. Then, the associated weight distribution
cannot be too spiky: maxp; < k!d~?k,
l

Lemma 5 (Restatement of Lemma 1). Let £ = {p;, DE}:':i be an e-approrimate k design for

U(d). Then,

< (1 i d N> d* 7.44
N. Hunter Jones shows that local circuits of size T = 0(n?k) form approximate k-designs
in the limit of large local dimension (Hilbert space dimension d = q™ with g large)

Corollary 2

The set of all local circuits of size T contains at least exp(Q(T)) elements with strong
complexity Q(T), provided that the local dimension is sufficiently large: g = q(T)




Untiary designs

Definition (Unitary k-design)

Let v be a probability distribution defined over a set of unitaries S € U(d). The
distribution v is unitary k-design if and only if:

Ey.,|VOkOVI®K] =, _, [US*OUT®k|,

~LH
for all 0 € £ (((Cd)®k).

. J

Definition 4 (approximate k-design). Fix k € N and ¢ > 0. A wunitary ensemble & =
{pi. {i}?:i is an e-approximate (unitary) k-design if the associated twirling channel TE{M(X) =
S i UPEX (UN®F obeys

k!

< e (7.43)

<

Here, TE_EM denotes the twirl over the full unitary group (7.32) (with respect to the Haar

measure ).




Strong state complexity

= Consider systems comprised of n qudits with local dimension g: d = q™
= The maximally mixed state: p, =£
= For any pure state [y ) (Y], ; )

Sl = poll = 1~

» The optimal measurement is M = |Y)}{y| and does depend on the state in question

— Such a measurement may be challenging to implement for states that we assign a
high complexity to.



Strong state complexity

= Consider systems comprised of n qudits with local dimension g: d = q™
= The maximally mixed state: p, =£
= For any pure state [y ) (Y], ; )

Sl = poll = 1~

» The optimal measurement is M = |Y)}{y| and does depend on the state in question

— Such a measurement may be challenging to implement for states that we assign a
high complexity to.

» H,: the space of d x d Hermitian matrices

= M,.(d) € Hy: the class of measurements that can be implemented by combining at
most r 2-local gates from a fixed, universal gate set G € U(4).

Bis(r, ) = maximize |Tr(M([1)h]—po))|
subjectto M € M,.(d)



Strong state complexity

.,Bfls (r,|¢)) = maximize |Tr (M (|} — po))]
subject to M € M,(d).
1 1

= B |Y)) — 5” X — polli =1 — 2 a8 T —00.

Definition 2 (Strong state complexity)

Fix r € N and 6§ € (0,1). We say that a pure state |y) has strong §-state complexity at
most r if

Bis(r, 1Y) =1 - % — &8,  which we denote as Cs(|y)) <.

;U

—




Strong state complexity

e

Hqs

(r,]¥)) = maximize |Tr (M (| )| — po))|
subject to M € M,(d).

Definition 2 (Strong state complexity)

Fix r € N and 6 € (0,1). We say that a pure state |) has strong §-state complexity at
most r if

Bis(r Yy =1 - % — &, which we denote as Cs(|y)) <.

Lemma 2 (Strongness)

Suppose that [) € €% obeys Cs(Jy)) =1 + 1 for some § € (0,1) and r € N. Then,
1
min_ = [|lp)wl-vioyot|, > V3,

size(V)sr
l.e. it Is impossible to accurately produce |¢) with fewer than r elementary gates.

.




Strong unitary complexity

Define the complexity of unitary channels U(p) = UpUT

The completely depolarizing channel: D(p) = py = g for all states p.

The diamond distance between D and any unitary channel is close to maximal:

U =Dl =1——
2 ° d2

G, € U(d?): the set of all unitary circuits on 2n qudits (register+memory) that are
comprised at most r’ elementary gates.

M. c HS@Z: the class of all two-outcome measurements on 2n qudits that require

circuit size at most '’ to implement.

.".i’gc(r'. U') = maximize ‘Tr (M((URL) (|oXo|l) = (DR I) (Jo)e|))) |
subject to M e M,/ . [¢) =V|0), Ve Gu., r=7r"+7"



Strong state complexity

Bt (r,U) = maximize |Tr (M (U @I) (|o)Xo]) — (D@ I) (|o)el))) |
subject to M € M, |¢) =VI[0), Ve Gu, r=70"+71"
1

i 1
. ,Bﬂ(r,D)—>§||L{—D||¢:1—d—2 as r — 400

Definition 3 (Strong unitary complexity)

Fix r € N and 6§ € (0,1). We say that a unitary U € U(d) has strong §-unitary complexity
at most r if

Bic(r,U)=1— % — 6, which we denote as Cs(U) <.

== =
N\
o =




Strong state complexity

Fix r € N and § € (0,1). We say that a unitary U € U(d) has strong &-unitary complexity
at most r if

B Gr,U) =1 —% — &, which we denote as Cs5(U) < .

Definition 3 (Strong unitary complexity)

Fix r € N and 6 € (0,1). We say that a unitary U € U(d) has strong §-unitary complexity
at most r if

Bi(r,U)=1— % — 6, which we denote as Cs(U) <.

Lemma 3 (Strongness)

Suppose that U € U(d) obeys Cs(U) = r + 1 for some § € (0,1), r € N and measurement
procedures that include the Bell-measurement |Q)(Q]. Then,

1
‘min =|U-V|, > V6,
size(V)sr 2

l.e. it is impossible to accurately approximate U by circuits comprised of fewer than r
elementary gates.

.




Complexity by design - State

Theorem 2 (State complexity growth)

Consider the set of (pure) states in d = g™ dimensions that results from applying all
unitaries associated with an e-approximate 2k-design to a fixed starting state |y,).
Then, this set contains at least

R AV S ¥
k 1+e - d(1—0)2

k
distinct states that obey Cs(Jy)) = r + 1 each. Qualitatively, this number is of order (%)
as long as r obeys

k(n — 2log(k))
rS
log(n)

N\




Complexity by design - Unitary

Theorem 3 (Unitary complexity growth)

A discrete approximate 2k-design in d = g™ dimension contains at least

(1 generap 1024k ¥
KU\1+e " d(1 — 6)2
distinct unitaries that obey Cs(U) = r + 1 each. Qualitatively, this number is of order
k

(%2) as long as r obeys

- k(n —4log(k))
~ log(n)




Moment bounds

» To show most unitaries in a k-design are complex, we must bound how much
measurement outcome can deviate from its average.

= Markov's inequality (for nonnegative RV )
Pr[S > ] = Pr[S* > %] < E[Sk]/t¥

.. The larger the moments we can control, the stronger this assertion becomes.
= For state complexity,

Theorem 4

.

Fix a bipartite input state |¢) € C* ® €% and a measurement M of compatible dimension.

Then,

Cr (k!)?
Ey | (Tr (MU ® 1>|¢><¢|(U+ ® 1) - Ey[Tr(MU @ DIe) (Ut @ )]) | < ';(k/z)

where C; = —(3¢) <= ~ denotes the k-th Catalan number.

~N




Use Theorem 2 and Theorem 3 to analyze concrete models



Local random circuits

Focus on systems comprised of n qubits, i.e. g =2 and d = 2"

G c U(4) be a finite universal gate set containing inverses

Generate G-local random circuits by sequentially applying a random gate g € G to a
randomly selected pair of neighboring qubits. Repeating T steps.

Intuitively, the larger T, the more random the circuit becomes

Theorem 5

Fix d =2" € >0, k <+/d, and let G c U(d?) be a universal gate set containing inverses.
Then, the set of all G-local random circuits of size T forms an e-approximate k-design if

1
T = Cn[log,(k)]?k%> (nk + log <E>>'
where C > 0 is a (large) constant which depends on G

\_

n2k11



I_Ocal 'A nd Om Cl rcu Its Theorem 3: 2k-design has (%2) Cs(U)=>r+1

Theorem 5: k-design if T = n?k!! size local circuit

= Theorem 3 + Theorem 5

Corollary 3 (Polynomial relation between circuit size and circuit complexity for local random circuits

11
Fix § € (0,1), r < 2™? and set T > Cn? (@) . Then, the set of all G-local circuits of

size T contains at least C21°8()7 ynitaries that obey Cs(U) > r. Here, C,C > 0 are
constants that implicitly depend on § and G.

1\ J

.. Strong complexity grows as Q(T1/11)

= Lower bound: for e < 1/4 and k < d'/?, the size of random circuits on n qudits must
be at least

T > 2knlogq

gk O form an e-approximation k-design



Relating two conjectures

» Fix g = 2,d = 2™ (n qubits) and suppose that the aforementioned lower bound were
not necessary, but also approximately sufficient:
G-local circuits of size T = generate sufficiently accurate approximat 2k-designs

log>(n)
= Then, G-local circuits of size T contain at least d?*/(k!)? elements with circuit

complexity r = T. If we assume that T < logzn&n) Vd, then this bound can be simplified
2

further as

- d** 2nk—2log(k!) 2k(n—log(k)) k nk log,(n)T T
Ix}j(m)Q:Q Bl > 2 B =d2 =272 ~ 2982 > 2

— Conjecture 1!

Conjecture 2 (Linear growth in complexity)

G-local circuits of size T = 0(nk) form approximate k-designs




Linear growth In design at large local dimension

Theorem 6

Random quantum circuits on n qudits of local dimension g form approximate unitary k-
designs when the circuit size is T = 0(n?k) for some g > q,, where g, depends on the
size of the circuit.

L

Theorem 3 + Theorem 6

Corollary 4 (Linear complexity growth). Given the set of local random circuits of size T at

large q, most circuits have strong complexity CU1T'), i.e. growing linearly in T for a long time.



Stochastic and Time-Dependent Models

Continuous-time analogue of random circuits
» Time-dependent Hamiltonian with random couplings
= Captures chaotic / Scrambling dynamics

Random all-to-all 2-body interactions & Gaussian random couplings

Hg = Z zjs,i,j,oc,ﬂsgsf t
i<j a,pB U, = 1_[ o~ iHst

where S7 is a Pauli operator acting on site i with a = {0,1,2,3}, J~N(0,0%) s—=1

Theorem 7

Theorem 7 (Corollary 10 in [25]). For d = 2™ and € > 0, Then the ensemble of time-

evolutions by stochastic Hamiltonians in Eq. (3.4), forms an e-approrimate k-design for times
t > C[logy(k)1%k”° (nk + log(1/e€)) , (3.6)

where C > 0 is a constant. C~1/]




Nearly time-independent Hamiltonian dynamics

There is another random quantum circuit-like construction of a time-dependent Hamiltonian
with varying couplings over discrete time steps. This “nearly time-independent” model of [26]
forms k-designs in a depth O(n?k) up to moments k = o(y/n), achieving the nearly optimal
lower bound with a linear growth in design for a short time.

Consider a 1d system of n qudits, with d = ¢", and define a time-dependent set of random
couplings

Itg) = {M(t/2) + 1), A€ [-g/2,9/2]}, (3.7)

as well as two ensembles of Hamiltonians with time-dependent couplings

Ez(t) = { =Y hpZiZi =Y bjZj, with hjx € J(t,H), bj € T(t, b)} (3.8)
i<k J

Ex(t) = { =Y hpX;Xp— > biX;, with hy, € J(t,h), b € J(t, b)} , (3.9)
i<k J

where g = [t/2]/2 and b = [t/2] + 1/2. We then define the time-evolution of our system:
we evolve by an X-type Hamiltonian Hx ~ £x at even time steps and a Z-type Hamiltonian

Hyz ~ £z at odd time steps. Then the unitary time-evolutions form an e-approximate k-design

for k = o(nl/g), after T' time steps, where

T > (k+1/2+ (1/n)logy(1/e)). (3.10)

This construction forms unitary k-designs almost linearly in time, with the caveat that
the time scale is limited to ~ /n. Thus we get a linear growth in design at early times, but

not exponentially in n. Consequently, this implies a linear growth in complexity at (very)

early times.



Complexity growth and black hole interiors

In AdS/CFT, an eternal AdS-Schwarzschild black hole grows linearly in time (t ~ e™)
Conjecture (Complexity = Volume):

= Quantum complexity of the dual CFT state is the long-time linearly increasing
quantity which captures the wormhole growth.

= Complexity of the boundary TFD state equals the spatial volume behind the horizon

Limits of the k-Design Approach for Holography

The connection between unitary designs and quantum complexity will likely not inform
complexity growth in holography as evolution by time-independent Hamiltonian will not
converge to approximate designs.

— we need to explore properties beyond the Haar-randomness of the evolution to
study complexity growth in holography



Strong complexity in the bulk

Claim: Strong definition of complexity is congruent with expectations form the bulk and
might be more suited for holography than the standard definition in terms of the circuit
complexity.

O(t) — e—thOeth
Switchback effect (complexity growth in holography)

- (Traditional) Circuit Complexity Proposed Strong Complexity

Definition Minimal gates to build a unitary Minimal measurement complexity to
distinguish from maximally mixed state

Switchback Gate cancellations outside the Simple measurements outside the
operator’s lightcone delay growth lightcone can still distinguish

After Operators spread over all qubits — Distinguishing requires global

scrambling gates no longer cancel — linear growth measurements — linear growth

Interpretation  Circuit cancellation Information access-delay



Strong complexity in the bulk

A more interesting example, where the strong and weak definitions of complexity differ,
is that of one-clean qubit. This is essentially the argument given in Lemma 2, to prove that
measurement. complexity is a stronger definition than standard circuit complexity. Consider

a simple initial state |1p), which has been evolved for an exponential time such that |¢/(t)) is

maximally complex. If we add a single unentangled qubit to the state |¢)(¢)) ® |0), then the
minimal circuit complexity will be unchanged, but maximal potential complexity increases
and the complexity of the state can continue to grow for a long time until it saturates at the
new maximal value. For the complexity of a distinguishing measurement, adding a single clean
qubit resets the complexity to an order one value, as the optimal measurement is simply the

projection onto the clean qubit. Ref. [7] proposed the notion of uncomplexity as the difference

of the complexity of a state or unitary from its maximal complexity, where uncomplexity can
be thought of as a resource to do useful computation. As we described, our strong definition
of complexity directly encodes this potential for useful quantum computation.
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In AdS/CFT, an eternal AdS-Schwarzschild black hole grows linearly in time (t ~ e™)
Conjecture (Complexity = Volume):
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Most states have high complexity

Random pure states |yp)(y| behave like the maximally mixed state p, in expectation.
Ejyy [Tr (M[yXe])] = Tr (MEyy [[¥X¢]]) = Tr (Mpo)

Concentration of measure ensures that deviations from this average case behavior are

exponentially suppressed in concrete instances

dr?
Pr[|Tr (M(J)e] — po))| > 7] < 2exp (—QFS) for any 7> 0

il

We refer to Proposition 1 in the appendix for a proof of this well-known result. We can

combine this assertion with a union bound (Boole’s inequality) to conclude for any » € N and

0 € (U: 1)

Pr(Cs(14)) < 1] = P | e (T M(u)e ~ )| > 1= a7 =5

d(1 —§)?
< 2.0072|M,| exp (— (9;73() ) : (5.3)

Suppose that M, arises from combining at most r elements of a fixed universal gate set
G C U(g?). A naive counting argument reveals |M,| < 2dn”|G|". We conclude that the
Pr[Cs(]¢))) < r] remains exponentially suppressed (in d = ¢™) until

T

]

(5.4)

P~
lo

g(n)
To summarize, a random state is exceedingly likely to have an exponentially large strong

d-state complexity.



Most high-complexity states far apart

We show this statement by induction based on two features of Haar random states.
Firstly, we use the main result from the previous subsection. Choose r» < ¢"/log(n) such that
Eq. (5.3) ensures

_ 8\2
Prles((u) < r] < 20072M;fexp (-5 ) < 5. (5.5)
97 2

The parameter r is chosen such that Haar random states exceed this complexity with proba-
bility 1/2. Concentration of measure also implies that a Haar-random state is very likely to
be far away from any fixed state |¢)¢|. For any A € (0,1),

973

Pr [L[e)e] — [é)alll, < 1 — A] = Pr [|(le)P > A?] < 3exp (—A‘ d) . (59)

This bound readily follows from Eq. (5.2) (set M = |¢)}¢|) and elementary modifications.
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