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What is BQP?

Definition: BQP

A language L belongs to BQP (Bounded-Error Quantum
Polynomial-Time) if there exists a family of polynomial-size quantum
circuits {C),} such that for every input = € {0,1}™:

v€L=PrCp(z)=1]> 2, v ¢ L=PrCp(z)=1] < i

That is, the decision can be made by a quantum computer in polynomial time
with bounded error.

v

e BQP is the quantum analogue of the classical class BPP.

@ It captures the set of problems efficiently solvable by a quantum
computer.

@ The error bound (< 1/3) can be reduced exponentially by repetition.

Reference: E. Bernstein and U. Vazirani, “Quantum complexity theory”, STAM Journal
on Computing, 26(5):1411-1473, 1997.
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Key Open Questions about BQP

We are still trying to understand how BQP relates to classical complexity
classes. In particular, there are three central questions that remain unresolved:

O Is BPP = BQP?
@ Is NP C BQP?
© Is BQP C NP or BQP C PH?

Even after more than 30 years, none of these questions have been
conclusively answered.

Understanding where BQP fits among classical classes remains one of the
fundamental goals of quantum complexity theory.
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What We Know So Far about BQP

@ Relations with Classical Classes

o [BV97] BPP C BQP C P#P
o [ADH97| BQP C PP

As a result:

P C BPP C BQP C PP C P#*P C PSPACE C EXP

@ Oracle Results

o [FR9S| PPBQP — pp
o [BBBV97] BQPBRP = BQP (self-low property)
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The Contrast with BPP: Open Questions about BQP

@ Researchers have long debated how BQP relates to classical complexity
classes such as NP, PH, and P /poly.

@ Seven key open questions remain unresolved:

O Is NPBQP C BQPNP?

Q@ Is BQPNP C PHBQP?

@ If NP C BQP, does it follow that PH C BQP?
Q If NP C BQP, does PH collapse?

@ Is BQP C P/poly”?

Q If P =NP, is BQP “small” (e.g., not EXP)?
@ If P = NP, does BQP = QCMA?

@ Even after decades of research, none of these questions are
conclusively settled.
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In Contrast: The BPP Case Is Well Understood

@ Unlike the quantum case, for BPP all analogous questions have clear
answers:

©Q NPBPP C AM C BPPNP

Q@ BPPYP C PH = PHBFP

@ If NP C BPP, then PH = BPP

Q If NP C BPP, then PH = XF (Sipser-Lautemann)

@ BPP C P/poly (Adleman’s Theorem)

O If P = NP, then BPP # EXP (by the time hierarchy theorem)
@ If P = NP, then BPP = MA

@ These results illustrate how BPP fits neatly within the classical
hierarchy — unlike BQP, whose relationships remain unsettled.
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Randomness vs. Quantumness

@ The key difference between BPP and BQP lies in the source of
randomness:

o BPP: classical probabilistic randomness.
e BQP: quantum superposition and interference.

@ This distinction underlies the theory of sampling-based quantum
supremacy.

o Google Sycamore [AAB+19], USTC [ZWD+20]
o Aaronson—Arkhipov (BosonSampling, 2011)
o Bremner—Jozsa—Shepherd (IQP model, 2010)

@ Quantum distributions are #P-hard to approximate classically.

@ If a classical algorithm could efficiently sample from the same
distribution, the Polynomial Hierarchy (PH) would collapse (by
Toda’s theorem).
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BQP vs. the Classical Hierarchy

So, BQP behaves fundamentally differently from classical classes.

@ Yet, several core questions remain open:
o Is NP C BQP?
o Is BQP C NP?
e Is BQP C PH?

None of these are known. What we do know: if NP C BQP and PH is
infinite, then at least one of the following must hold:

NP ¢ BQP or BQP ¢ AM.

@ Thus, the quantum world does not fit neatly inside the classical
hierarchy.
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Relativization: Classical Perspec

@ Since Baker—Gill-Solovay (1975) [BGS75], relativization has been a
key technique in complexity theory.

o When direct proofs (e.g., P vs. NP) are difficult, researchers
consider a relativized world—attaching an oracle to all machines.

e This allows the study of structural properties of complexity classes,
even without resolving the full separation.

@ Analogy: like perturbation theory in physics—we may not know the
exact solution, but can analyze behavior under controlled variations.

@ However, relativization is not a complete proof technique.

e Some results are non-relativizing, such as
IP = PSPACE [Shamir, 1992] and MIP = NEXP [BFL, 1991].
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Relativization in Quantum Comyj

@ In the quantum setting, even oracle queries can be made in
superposition.

e This makes quantum relativization far richer and more subtle than
its classical counterpart.

@ Relativization in quantum complexity is not only formal—it helps us
observe how “free” quantum computation is within classical hierarchies.

@ Early oracle results about BQP:

o [BV97] BPP C BQP ¢ BPP#FP — formalized through Simon’s
(1997) and Shor’s (1997) algorithms. = Factoring € BQP.

o [BBBV97] There exists an oracle relative to which NP ¢ BQP —
Grover’s /N search is black-box optimal.

@ = Quantum advantage exists, but solving NP-complete problems in
polynomial time may still be impossible.
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From Fortnow & Rogers (1998)

o Fortnow & Rogers (1998) showed that there exists an oracle where
P = BQP while PH is infinite. = Quantum power does not necessarily

collapse classical hierarchies.

@ Since then, key question emerged:
IsBQP CPH ?

How far apart are quantum and classical worlds under oracles?

@ Aaronson & Chen (2017) further showed that if quantum sampling
can be classically approximated, then PH collapses. = To prove

quantum advantage, non-relativizing techniques are required.
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The Forrelation Problem (Aaronson, 201

Problem: Forrelation
Given Boolean functions f,g: {0,1}" — {—1,+1}, decide whether

@ [ and g are independent random functions, or

@ g is correlated with the Fourier transform of f.

Quantum algorithm: solves with a single quantum query (time O(n)).

Classical algorithm: requires Q(2"/2) queries.

= Forrelation proposed as an indicator of quantum supremacy.

@ Aaronson conjectured: Forrelation ¢ PH.
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The Raz—Tal Theorem (201

o Raz & Tal (2018) proved Aaronson’s conjecture:

BQP ¢ PH (relative to an oracle).

@ Technique:

o Strengthened AC° lower bound techniques.
o Analyzed low-order Fourier coefficients of the Forrelation function.
e Introduced a probabilistic view via Brownian motion.

@ Main Theorem (Raz—Tal): Any PH machine distinguishes random
(f,g) from forrelated pairs only with bias 27,

= PH cannot distinguish them at all; the first oracle separation
BQP ¢ PH.
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w of Main Results

The following results extend the Raz—Tal framework, exploring

relativized worlds.

how BQP behaves under various

No. Result Implication

. BQP PH BQP NP Quantum-—classical nondeterminism
Thm 3 3J oracle: NP Z BQP , NP Z BQP non-interchangeable.
Thm 4 | 3 oracle: P = NP, but BQP # QCMA pven if P= NP, BQP remains dis-
Conj 5 3 oracle: NP C BQP, but PH ¢ BQP BQP cannot swallow PH.
Thm 6 3 oracle: BQPNP Z PHBQP Asymmetry between PH and BQP.

_ hier QMA hierarchy cannot express
Thm 7 (random oracle) PP = PostBQP Z QM A PostBQP.
P . e

Thm 8 (random oracle) EkP+1 (74 BQPEk PH levels remain distinct.
Thm 9 3 oracle: BQP = P#P7 PH infinite Quantum power classical collapse.
Thm 10 | 3 oracle: P = NP # BQP = P#F BQP can still be much stronger.

Together, these theorems reveal how BQP diverges fundamentally from classical hierarchies.
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Theorem 3 — Fortnow Problem

J oracle such that NPB?Y ¢ BQPPH, NPBRP ¢ BQPNT.

e Background: Fortnow (2005) raised the question whether
NPBRP C BQPNP or not.

@ Main Result: The paper shows a negative answer — quantum and
classical nondeterminism are non-interchangeable.

@ Intuition: When a quantum oracle is combined with classical
nondeterminism, the order of composition matters.

@ Insight: “Quantum randomness cannot be fixed.” Classical
nondeterministic queries cannot control superposed quantum states.

Contrast: In the classical world, NPPPY = BPPNT  showing how quantum
composition breaks this symmetry.
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Theorem 4 — Classical Collapse, Yet Quantum Distinct

3 oracle such that P = NP, but BQP #* QCMA.

@ Background: In classical complexity, if P = NP, most major
separations collapse. One might expect quantum complexity classes to
collapse as well.

@ Main Result: Even under P = NP, the class BQP remains strictly
distinct from QCM A (Quantum Classical Merlin-Arthur).

@ Intuition: Classical certificates (Merlin—Arthur with classical witness)
cannot simulate the full expressive power of quantum verification.

@ Insight: This separation is relativizing, showing that quantum
verification retains a unique structure even when deterministic and
nondeterministic computation coincide.

Implication: The existence of efficient classical proofs (P = NP) does not
eliminate the need for quantum proofs.
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Conjecture 5 — BQP Cannot Swallow PH

Conjecture 5

3 oracle such that NP C BQP but PH ¢ BQP.

@ Meaning: Even if quantum algorithms can efficiently solve all NP
problems, they may still fail to capture the full power of the polynomial
hierarchy.

@ Intuition: Quantum computation may efficiently solve search problems,
yet higher—order alternations of quantifiers (3v3---) remain beyond its
reach.

o Relation to Raz—Tal: Extends the idea that BQP ¢ PH (relativized).
Now the conjecture goes further—assuming NP C BQP, PH would still
not collapse into the quantum world.

o Interpretation: Suggests a strict structural separation between
quantum computation and the classical logical hierarchy.

In short: Quantum advantage does not necessarily imply domination over
classical hierarchies.
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Theorem 6 — Asymmetry between BQP and PH

3 oracle such that BQPNF ¢ PHB®F,

o Background: After Raz—Tal’s separation (BQP ¢ PH), a natural
question arises: does the reverse inclusion PHBQP O BQPNF hold?

@ Main Result: No — the inclusion fails even in the opposite direction.
Quantum and classical hierarchies are fundamentally asymmetric.

@ Intuition: Quantum queries can exploit superpositions over
nondeterministic paths, whereas PHZ®F machines can only make
classical adaptive queries to quantum oracles.

@ Implication: There is no “universal” direction of inclusion between the
two; quantum and classical hierarchies are structurally incomparable.

This deepens the Raz—Tal separation: BQP and PH not only differ, but their
oracle-extended versions fail to simulate one another.
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Theorem 7 — Limits of the QMA Hierarchy

Theorem 7

(Random oracle) PP = PostBQP ¢ QM AQMAMA

@ Background: In classical complexity, we know that PostBPP C PH
(Stockmeyer, 1985). A natural question is whether its quantum analogue
also lies within a quantum hierarchy.

@ Main Result: Even an unbounded tower of quantum-Merlin—Arthur
verifiers cannot simulate PostBQP.

@ Intuition: Postselection boosts quantum computational power up to
PP. The QMA hierarchy, however, relies on polynomial-size quantum
proofs, which cannot encode postselected amplitudes.

o Insight: No “quantum Stockmeyer theorem” exists — the hierarchy of
quantum verifiers is strictly weaker than postselection.

Implication: Quantum proofs cannot reproduce the full counting power of PP,
highlighting structural limits of QMA hierarchies.
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Theorem 8 — Persistence of the PH Gap

(Random oracle) Xp ., & BQPZ¥, Vk.

@ Background: Raz—Tal (2019) proved that BQP ¢ PH. This theorem
generalizes that result to every level of the polynomial hierarchy.

@ Main Result: Even when a quantum oracle is given access to lower
levels of PH, the hierarchy does not collapse — each Ekp 1 remains

strictly stronger than BQPEE .

@ Technique: Extends the Raz—Tal “randomness obfuscation” argument
using a quantum projection lemma (a quantum analogue of Hastad et al.,
2017 random restriction).

@ Intuition: Under random oracle relativization, quantum algorithms
cannot exploit higher quantifier alternations. Thus PH retains its infinite
depth even in a quantum context.

Implication: The polynomial hierarchy resists collapse under quantum oracles —
demonstrating the enduring separation between logical quantifier depth and quantum power.
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Theorem 9 — BQP = P#F but PH Infinite

3 oracle such that BQP = P#¥| and PH is infinite.

@ Background: In the classical world, if a class gains # P power, the
polynomial hierarchy often collapses. This theorem shows that in the
quantum world, such collapse does not necessarily occur.

@ Main Idea: Extend Raz—Tal’s oracle framework to encode # P
computation within BQP queries, while ensuring that to PH machines,
the oracle still appears pseudorandom.

@ Technique: Construct a random oracle augmented with Forrelation
instances that are visible to BQP but indistinguishable to PH. Each
# P computation is embedded via structured quantum correlations.

@ Result: BQP becomes as powerful as P#7 yet the PH remains infinite.

@ Insight: Quantum power (counting through amplitude interference)
does not imply classical hierarchy collapse.

Implication: Even when BQP reaches counting-class power, the polynomial hierarchy can
still stretch infinitely—quantum # collapse.

Jaehun Han The Acrobatics of BQP 2025.10.19



Theorem 10 — P = NP but BQP # P

3J oracle such that P = NP # BQP = P#F.

@ Background: Classically, if P = NP, then nondeterminism adds no
power — the entire PH collapses to P. The natural question: would
quantum power also collapse in this world?

@ Result: There exists an oracle where P = NP, yet BQP remains as
strong as P#T. Hence, even when classical nondeterminism vanishes,
quantum interference preserves superior power.

@ Technique: Start from the oracle of Theorem 9 (where BQP = P#F
PH infinite), then augment it to collapse PH to P, keeping the
Forrelation parts intact. PH sees randomness; BQP still exploits hidden
quantum correlations.

@ Implication: “Even if P = NP, quantum advantage persists.” The
collapse of classical hierarchies does not erase quantum superiority.

Conclusion: Quantum computation remains fundamentally distinct from classical
computation, even in a world where nondeterminism is free.
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Conclusion

The paper extends the Raz—Tal framework, constructing various oracles that
separate BQP from classical hierarchies (NP, PH, QMA, etc.).

Demonstrates that:

@ Quantum and classical nondeterminism are non-interchangeable.
@ The polynomial hierarchy remains infinite, even with quantum power.
@ Even if P = NP, quantum computation stays fundamentally stronger.

Together, these results reveal that BQP cannot be neatly placed within
classical hierarchies.

Open Problems and Future Directions

Oracles where BQP = EXP

Finer Control over BQP and PH
Stronger Random Restriction Lemmas
Collapsing QMAH to P

Quantum complexity remains a frontier where new principles,
beyond relativization, are essential.
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