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Course Details

• Introductory-level overview of quantum learning theory and quantum complexity
theory

• Covers fundamental tools for analyzing the sample complexity of quantum learning
tasks

• Includes techniques involving the Haar measure

• Core algorithms for learning:
• Quantum states, unitaries, processes, and circuits

• Introduction to key quantum complexity classes

• Theoretical CS background for foundational papers in quantum learning

• Includes a glimpse of recent research trends

• Topics may be adjusted based on participant interest
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Prerequisites

• Participants should already be familiar with:
• Linear algebra, probability theory, and basic quantum information theory
• Density matrix formalism, POVMs, Pauli matrices
• Bloch sphere representation
• Basic quantum channels (e.g., depolarizing, dephasing)
• Unitary and Hermitian matrices, spectral decomposition
• Tensor product notation and partial trace
• Entanglement measures (e.g., von Neumann entropy, mutual information)

• These topics will not be reviewed during the course. (Only a brief review below.)

• Students lacking this background may find the material di!cult to follow.
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Density Matrix Formalism

Review: Quantum Computation and Quantum Information, Chapters 1–2

By tracing out subsystem A of a pure state |ω→, we obtain a mixed state ε:

|ω→ =
∑

i

↑
pi |ωi →A |i→B ↓ ε = TrA(|ω→ ↔ω|) =

∑

i

pi |ωi → ↔ωi | (1)
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Bloch Sphere Representation

Review: Quantum Computation and Quantum Information, Chapters 1–2

Any 1-qubit pure state |ω→ can be written as:

|ω→ = ϑ |0→+ ϖ |1→ , |ϑ|2 + |ϖ|2 = 1 (2)

It can equivalently be represented on the Bloch sphere as:

|ω→ = e iω
(
cos

ϱ

2
|0→+ e iε sin

ϱ

2
|1→

)
(3)
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POVM

Review: Quantum Computation and Quantum Information, Chapters 1–2

A measurement is described by a set of operators {Mm}. Given a state ε, the probability
of outcome m is:

pm = Tr(M†
mMmε) (4)

The post-measurement state becomes:

ε ↗
MmεM

†
m

Tr(M†
mMmε)

(5)
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(Pauli) Observables

Review: Quantum Computation and Quantum Information, Chapters 1–2

Define Pn = {I ,X ,Y ,Z}→n to be the set of n-qubit Pauli strings.

Then any observable O on n qubits can be expressed as a linear combination of Pauli
operators:

O =
∑

ϑx↑Pn

ϑxςx (6)
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Unitary Transformation

Review: Quantum Computation and Quantum Information, Chapters 1–2

The evolution of a closed quantum system is described by a unitary transformation. That
is, the state ε evolves under a unitary U as:

ε↓ = UεU† (7)
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Swap Test

Review: Quantum Computation and Quantum Information

The inner product |↔ω|φ→|2 between two pure states |ω→ , |φ→ can be estimated via the
swap test with ↼-additive error using O(1/↼2) repetitions.

Figure: Swap test circuit
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Survey Overview

Note: This course approaches the subject from a mathematical and theoretical computer
science perspective.

Student Type

• Undergraduate students (80%)

• Master’s students (4%)

• Integrated MS–PhD program students
(12%)

• Others (4%)

Major

• Physics (40%)

• EECS (40%)

• Other engineering (12%)

• Chemistry (8%)
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What This Course Does Not Cover

• This course focuses on provable learning models, especially in the context of
quantum state learning.

• Core topics include:
• Sample complexity analysis
• Related mathematical foundations

• We do not cover heuristic or variational quantum machine learning models such as:
• Quantum Neural Networks (QNN), Quantum Convolutional Neural Networks (QCNN),

Quantum GANs (QGAN)
• Tasks like training classifiers on datasets such as MNIST

• However, we will briefly discuss the use of quantum neural estimation in the
context of quantum property testing.
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Course Policies

• No lecture recordings will be provided.
• Lectures will primarily be held online via Zoom.

• Access details will be shared later.
• Lecture 4 or 8 may optionally be held in person, depending on circumstances, and may

include a Q&A session.

• All lectures are scheduled for Saturdays at 3 PM, except Lecture 2, which will be
held on Sunday.

• Problem sets may be assigned during the course.

• Any changes to the lecture schedule will be announced in advance.
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Tentative Schedule and Topics

• Jul 12 – Overview of quantum learning theory

• Jul 20 – Haar measures and classical shadows (1)

• Jul 26 – Haar measures and classical shadows (2)

• Aug 02 – Quantum property neural estimation

• Aug 09 – Complexity of learning quantum states

• Aug 16 – Quantum complexity and homology problems

• Aug 23 – Learning quantum circuits and unitaries

• Aug 30 – Open problems and discussion session

Note: Lecture topics are subject to minor changes.
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Instructors

Junseo Lee
Lectures: Weeks 1, 5, 6, 8
Research interests:

• Quantum complexity theory

• Quantum learning theory

• Quantum algorithms

Myeongjin Shin
Lectures: Weeks 2, 3, 4, 7
Research interests:

• Quantum property estimation

• Quantum learning theory

• Quantum algorithms
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What is quantum learning?

“How can we learn about quantum objects and phenomena?”

• Arguably one of the most basic scientific questions:
• What is this object?
• Is it equal to some other object?
• What are its statistics?
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(Online) Quantum Learning

Professor A sets up an experiment in his lab that produces one copy of a quantum state ε
at a time.

Question:
How many copies of ε are required to learn useful information about it?
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Why Do We Care About Quantum Learning Problems?

• Physical phenomena are fundamentally quantum.

• It is useful for verifying the outcome of quantum computations.

• It is the natural non-commutative analogue of distribution learning and testing.

• Quantum advantage?
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Classical vs Quantum Distributions

• Classical distribution: A probability distribution over d elements is specified by a
vector p ↘ Rd on the simplex, i.e.,

• px ≃ 0 for all x = 1, 2, . . . , d
•

∑d
x=1 px = 1

• Quantum distribution: A mixed quantum state over d dimensions is specified by a
matrix ε ↘ Cd↔d on the spectrahedron, i.e.,

• ε is Hermitian: ε = ε†

• ε ⇐ 0 (positive semidefinite)
• Tr(ε) = 1
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Quantum Distributions

By the spectral theorem, any quantum state ε can be written as

ε = U”U†

where:

• U is a unitary matrix (represents a change of basis or rotation)

• ” is a diagonal matrix with nonnegative entries that sum to 1
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Key Di!erence 1: Measurement

One does not simply sample from a quantum state! To interact with a quantum state,
one must specify a measurement M.

A measurement is a collection of d ⇒ d matrices M = {M1,M2, . . . ,Mϖ} such that:

• Mi ⇐ 0 for all i = 1, . . . , ↽ (each Mi is positive semidefinite)

•
∑ϖ

i=1Mi = I (completeness relation)

Such a measurement is called a Positive Operator-Valued Measure (POVM).

In this talk, we often assume each Mi is rank-one, i.e., Mi = wi |⇀i → ↔⇀i | for some ⇑⇀i⇑ = 1
and wi ≃ 0.

When measuring a state ε with this POVM, the outcome i is observed with probability

pi = Tr(εMi ) = wi ↔⇀i | ε |⇀i → ,

and the state ε collapses after measurement.
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Classical Testing and Learning

Given n samples from an unknown distribution p, infer some property of p:

• Uniformity testing: test whether p is uniform or ⇁-far from uniform

• Identity testing: test whether p = q for a known distribution q or ⇁-far from it

• Distribution learning: learn p to total variation distance error ⇁

All guarantees are required to hold with high probability.
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Quantum Testing and Learning

Given n copies of an unknown quantum state ε, infer some property of ε:

• Mixedness testing: test whether ε is the maximally mixed state or ⇁-far from it

• State certification: test whether ε = ς for a known state ς or ⇁-far from it

• Quantum state tomography: learn ε to trace distance error ⇁

All guarantees are required to hold with high probability.
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Key Di!erence 2: Entanglement

Formally, N copies of a quantum state ε correspond to a single copy of the larger mixed
state ε→N .

We can apply a single global measurement to ε→N — such a measurement is called an
entangled measurement.

While the state ε→N itself is a product state and not entangled, it turns out that
entangled measurements allow us to extract information more e!ciently than product
(separable) measurements.

To fully explain this phenomenon, we will need tools from representation theory
(covered in Lectures 2 and 3).
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Schur–Weyl Duality

Suppose we are interested in estimating some property of ε’s spectrum.

Then, any optimal measurement on ε→N should satisfy the following invariance conditions:

1. It should be invariant under permuting the copies of ε:

ε1 ⇓ ε2 ⇓ · · ·⇓ εN ↓ εϱ(1) ⇓ εϱ(2) ⇓ · · ·⇓ εϱ(N)

2. It should be invariant under applying a shared unitary to all copies:

ε→N
↓

(
U†εU

)→N
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Schur-Weyl duality (cont.)

Both SN and Ud have a natural action on (Cd)→n. Let

P(·),Q(·) : (Cd)→n
↗ (Cd)→n

be the associated representations:

P(π)x1 ⇓ x2 ⇓ · · ·⇓ xN = xϱ→1(1) ⇓ xϱ→1(2) ⇓ · · ·⇓ xϱ→1(N)

Q(U)x1 ⇓ x2 ⇓ · · ·⇓ xN = (Ux1)⇓ (Ux2)⇓ · · ·⇓ (UxN)

Both representations have direct product structure (“irreps”) which are naturally
identified with partitions of N, and since they commute, they have nice joint structure.
This can be formalized by the famous Schur-Weyl duality.
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Schur-Weyl duality (cont.)

Schur–Weyl Duality:
PQ ⇔=

⊕

ς↗N
ϖ(ς)↘d

pς ⇓ qdς

1. λ is a partition of N into at most d parts, i.e., λ = (λ1, . . . ,λk) where
λ1 ≃ λ2 ≃ · · · ≃ λk > 0,

∑
i λi = N, and k ↖ d .

2. pς is the associated irrep of SN .

3. qdς is the associated irrep of Ud ; moreover, qdς is a matrix polynomial.

Corollary: There exists a fixed unitary USchur on (Cd)→N such that for any ε ↘ Cd↔d ,

U†
Schurε

→NUSchur =
⊕

ς↗N
ϖ(ς)↘d

Iddim(ς) ⇓ qdς(ε) (8)
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Weak Schur Sampling

This unitary transformation gives us a generic way to turn ε→N into a block diagonal
matrix with nice structure.
This also motivates weak Schur sampling:

1. Rotate ε→N with the Schur transformation.

2. Let #ς denote the projection onto the (now coordinate) subspace indexed by λ.

3. Measure with the (projective) measurement

{#ς} ς↗N
ϖ(ς)↘d

.
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Weak Schur Sampling

Theorem [folklore, see e.g. Wright’16]: Suppose we are interested in measuring a
property of ε which depends only on its spectrum. Then weak Schur sampling is the
optimal measurement on ε→N .

Note that since USchur is a rotation in (Cd)→N , this is a necessarily entangled
measurement!
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The cost of entanglement

Hsin-Yuan Huang et al., Quantum advantage in learning from experiments. Science 376,
1182-1186 (2022).
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The power of quantum memory

For learning d-dimensional states:

Learning Problem With entanglement Without entanglement

State tomography $(d2)
[HHJW’17, OW’17]

$(d3)
[CHLLS’22]

State certification $(d)
[OW’16]

$(d2)
[CHLL’22]

Shadow tomography
with m observables

O(log2m log d)
[BO’20]

$̃(min(m, d))
[HKP’20, CCHL’21]

Shadow tomography
of Pauli observables

O(log d)
[HKP’20]

$̃(
↑
d)

[HKP’20, CCHL’21]

Purity testing $(1)
[folklore]

$(
↑
d)

[CCHL’21]
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By the way. . .

Doesn’t this suggest we can’t perform quantum learning with our current quantum
memory capabilities?

Idea: Our lower bounds yield tasks that provably and unconditionally require quantum
memory to be solved e!ciently.

Existing quantum computers do have some limited amounts of quantum memory.

If we can solve some of these tasks on real quantum computers,
then the computer must be using quantum memory
↓ the computer must exhibit fundamentally quantum behavior.

Conclusion: Our techniques can be used to demonstrate quantum advantage.
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An example: Shadow tomography

Shadow tomography [Aaronson’18]:
Let O = {Oj}

m
j=1 ↙ Cd↔d be a set of m matrices (”observables”).

Assume that ⇑Oj⇑op ↖ 1 for all j .

Given N copies of ε, estimate tr(Ojε) to error ⇁ for all j = 1, . . . ,m.
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Upper and lower bounds

[Bădescu–O’Donnell ’21]: There is an estimator using entangled measurements that
succeeds with high probability when

N = O

(
log2(m) log d

⇁4

)
.

Theorem [CCHL’21]: There is a collection of m observables such that any estimator
using unentangled measurements that succeeds with probability ≃ 0.51 requires

N = %̃

(
min(m, d)

⇁2

)
.

Any estimator for this problem without quantum memory is exponentially worse!
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Unentangled but adaptive algorithms

The key technical challenge in proving bounds for unentangled algorithms is proving lower
bounds against adaptive algorithms.
Such a lower bound is essential for proving quantum advantage.
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The tree representation

Inspired by the literature on bandit lower bounds, [BCL’20] introduce the tree
representation of unentangled learners.
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From trees to distributions
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From trees to distributions
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The tree distribution
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The tree distribution
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Note : to get our lower bounds
,
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Preview: Types of Approaches

Here are some advanced techniques that we will study later (around Lecture 5). Each has
been influential in recent theoretical work.

• Jensen’s inequality: something like learning tree formalism [HKP’21, CCHL’21,
CCHL’22] ↗ Uses edge-based analysis of likelihood ratios. Often results in loose
bounds.

• Chain Rule : Upper bound the total variation (TV) distance by the conditional
▷2-divergence. [BCL’20, CLO’22]

• Generalizes a technique used in classical online learning lower bounds.
• Originally developed by Bubeck and Cesa-Bianchi (2012).

• Anti-concentration: Directly demonstrate anti-concentration of the posterior
distribution. [CHLL’22, CHLLS’23]
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Assignment

Read arXiv:2307.08956, Chapters 1 and 2.
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Thanks a lot!
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