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Haar measure

Definition 1 (Haar measure)

The Haar measure on the unitary group U(d) is the unique probability measure µH that is
both left and right invariant over the group U(d), i.e., for all integrable functions f and
for all V → U(d), we have:

∫

U(d)
f (U) dµH(U) =

∫

U(d)
f (UV ) dµH(U) =

∫

U(d)
f (VU) dµH(U). (1)

The Haar measure is a probability measure, satisfying:

•
∫
S 1 dµH(U) ↑ 0

•
∫
U(d) 1 dµH(U) = 1

• E
U→µH

[f (U)] :=
∫
U(d) f (U) dµH(U)
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Why Haar measure?

• Tool for analyzing randomness.

• Among the randomness, we have to find the answer. We can get the probability of
finding the answer. (Prob|ω↑→µH

[|f (ω)↓ E|ε↑→µH
[f (ε)]| ↑ ϑ]). The calculations of

probability can lead to complexity.

• Applications in fidelity, channel calculations, concentration inequalities, quantum
machine learning, classical shadow tomography, etc.
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Haar measure properties

Proposition 2

Let k1, k2 → N. If k1 ↔= k2, then we have E
U→µH

[
U↓k1 ↗ U↔↓k2

]
= 0.

Proposition 3

For all integrable functions f defined on U(d), we have that:

E
U→µH

[
f
(
U†

)]
= E

U→µH

[f (U)] . (2)
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Moment operator

Definition 4 (k-th Moment operator)

The k-th moment operator, with respect to the probability measure µH , is defined as

M(k)
µH : L

(
(Cd)↓k

)
↘ L

(
(Cd)↓k

)
:

M(k)
µH

(O) := E
U→µH

[
U↓kOU†↓k

]
, (3)

for all operators O → L((Cd)↓k).

In order to characterize the moment operator, we need to define the k-th order
commutant of a set of matrices S .
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Commutant

Definition 5 (Commutant)

Given S ≃ L
(
Cd

)
, we define its k-th order commutant as

Comm(S , k) := {A → L
(
(Cd)↓k

)
:
[
A,B↓k

]
= 0 ⇐B → S}. (4)

It is worth noting that Comm(S , k) is a vector subspace.(pset)
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Properties of Moment operator

Lemma 6 (Properties of the moment operator)

The moment operator M(k)
µH (·) := E

U→µH

[
U↓k (·)U†↓k

]
has the following properties:

1. It is linear, trace-preserving, and self-adjoint with respect to the Hilbert-Schmidt
inner product.

2. For all A → L
(
(Cd)↓k

)
, M(k)

µH (A) → Comm(U(d), k).

3. If A → Comm(U(d), k), then M(k)
µH (A) = A.
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Projector onto the commutant

Theorem 7 (Projector onto the commutant)

The moment operator M(k)
µH (·) = E

U→µH

[
U↓k (·)U†↓k

]
is the orthogonal projector onto

the commutant Comm := Comm(U(d), k) with respect to the Hilbert-Schmidt inner
product. In particular, let P1, . . . ,Pdim(Comm) be an orthonormal basis of Comm and let

O → L((Cd)↓k). Then, we have:

M(k)
µH

(O) =

dim(Comm)∑

i=1

⇒Pi ,O⇑HSPi . (5)
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Permutation operators

Definition 8 (Permutation operators)

Given ϖ → Sk an element of the symmetric group Sk , we define the permutation matrix
Vd(ϖ) to be the unitary matrix that satisfies:

Vd(ϖ) |ε1⇑ ↗ · · ·↗ |εk⇑ = |εϑ→1(1)⇑ ↗ · · ·↗ |εϑ→1(k)⇑ , (6)

for all |ε1⇑ , . . . , |εk⇑ → Cd .
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Schur-Weyl duality

Theorem 9 (Schur-Weyl duality)

The k-th order commutant of the unitary group is the span of the permutation operators
associated to Sk :

Comm(U(d), k) = span
(
Vd(ϖ) : ϖ → Sk

)
. (7)

Easy to check that span
(
Vd(ϖ) : ϖ → Sk

)
≃ Comm(U(d), k).

How about Comm(U(d), k) ≃ span
(
Vd(ϖ) : ϖ → Sk

)
?(pset)
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Permutation operators

Proposition 10

For ϖ → Sk , the permutation matrices Vd(ϖ) are linearly independent if k ⇓ d , but
linearly dependent if k > d .

Definition 11 (Identity and Flip operators)

The identity permutation operator I is:

I (|ε⇑ ↗ |ω⇑) = |ε⇑ ↗ |ω⇑ , for all |ε⇑ , |ω⇑ → Cd . (8)

The Flip operator F is:

F (|ε⇑ ↗ |ω⇑) = |ω⇑ ↗ |ε⇑ , for all |ε⇑ , |ω⇑ → Cd . (9)

Tr((A↗ B)F ) = Tr (AB).
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Computing moments

Theorem 12 (Computing moments)

Let O → L
(
(Cd)↓k

)
. The moment operator can then be expressed as a linear

combination of permutation operators:

E
U→µH

[
U↓kOU†↓k

]
=

∑

ϑ↗Sk

cϑ(O)Vd(ϖ), (10)

where the coe!cients cϑ(O) can be determined by solving the following linear system of
k! equations:

Tr
(
V †
d (ϱ)O

)
=

∑

ϑ↗Sk

cϑ(O)Tr
(
V †
d (ϱ)Vd(ϖ)

)
for all ϱ → Sk . (11)

This system always has at least one solution.

Examples on the next slides.
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Computing moments examples

Example 13

Comm(U(d), k = 1) = span
(
I
)
, (12)

Comm(U(d), k = 2) = span
(
I,F

)
. (13)

Prove this.(pset)
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Computing moments examples

Example 14 (First and second moment)

Given O → L
(
Cd

)
, we have:

E
U→µH

[
UOU†

]
=

Tr(O)

d
I . (14)

Given O → L((Cd)↓2), we have:

E
U→µH

[
U↓2OU†↓2

]
= cI,OI+ cF,OF, (15)

Deduce cI,O , cF,O with Theorem 10.(pset)
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Symmetric Subspace

Definition 15 (Symmetric subspace)

Symk(Cd) :=
{
|ε⇑ → (Cd)↓k : Vd(ϖ) |ε⇑ = |ε⇑ ⇐ϖ → Sk

}
. (16)

To facilitate our analysis, we also define the operator P(d ,k)
sym as follows:

P(d ,k)
sym :=

1

k!

∑

ϑ↗Sk

Vd(ϖ). (17)
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Projector on symmetric subspace

Theorem 16 (Projector on Symk(Cd))

P(d ,k)
sym is the orthogonal projector on the symmetric subspace Symk(Cd).

We also have Symk(Cd) = Im
(
P(d ,k)
sym

)
.
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Dimension of symmetric subspace

Theorem 17 (Dimension of the symmetric subspace)

If d ↑ k , we have

Tr
(
P(d ,k)
sym

)
= dim

(
Symk(Cd)

)
=

(
k + d ↓ 1

k

)
. (18)

otherwise Tr
(
P(d ,k)
sym

)
= 0.
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Anti-symmetric subspace

Definition 18 (Anti-symmetric subspace)

The anti-symmetric subspace is the set:

ASymk(Cd) :=
{
|ε⇑ → (Cd)↓k : Vd(ϖ) |ε⇑ = sgn (ϖ) |ε⇑ ⇐ϖ → Sk

}
, (19)

where sgn (ϱ) denotes the sign of a permutation ϱ → Sk .
Similarly as before, we can define the operator:

P(d ,k)
asym :=

1

k!

∑

ϑ↗Sk

sgn (ϖ)Vd(ϖ). (20)
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Projector on anti-symmetric subspace

Theorem 19

P(d ,k)
asym is the orthogonal projector on the anti-symmetric subspace ASymk(Cd).

We also have Im
(
P(d ,k)
asym

)
= ASymk(Cd).

Proposition 20 (Dimension of the anti-symmetric subspace)

If d ↑ k , we have:

Tr
(
P(d ,k)
asym

)
= dim

(
ASymk(Cd)

)
=

(
d

k

)
, (21)

otherwise Tr
(
P(d ,k)
asym

)
= 0.
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Symmetric and anti-symmetric subspace relation

Proposition 21

We have P(d ,k)†
asym P(d ,k)

sym = 0. In particular P(d ,k)
asym and P(d ,k)

sym are orthogonal with respect to
the Hilbert-Schmidt inner product.

We can deduce (Cd)↓2 = Sym2(Cd)⇔ASym2(Cd).
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Haar measure on states

Definition 22 (Haar measure on states)

Given a state |ω⇑ in Cd , we denote

E
|ε↑→µH

[
|ε⇑ ⇒ε|↓k

]
:= E

U→µH

[
U↓k |ω⇑ ⇒ω|↓k U†↓k

]
. (22)

Moreover, we have:

E
|ε↑→µH

[
|ε⇑ ⇒ε|↓k

]
=

P(d ,k)
sym

Tr
(
P(d ,k)
sym

) . (23)
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Questions?
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Spherical designs

Definition 23 (Spherical t-design)

Let Pt : S(Rd) ↘ R be a polynomial in d variables, with all terms homogeneous in degree
most t. A set X = {x : x → S(R)} is a spherical t-design if

1

|X |
∑

x↗X
Pt(x) =

∫

S(Rd )
Pt(u)dµ(u) (24)

holds for possible ⇐Pt , where dµ is the uniform, normalized spherical measure.
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Spherical designs

Figure: Spherical t-designs

For example, f (x , y , z) = x4 ↓ 4x3y + y2z2 then compute the average value of f by using
spherical 4-design on the figure.
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Unitary designs

Generating Haar random unitaries on a quantum computer could be expensive. (Most
unitaries require an exponential number of elemantary gates)

Definition 24 (Unitary k-design)

Let ς be a probability distribution defined over a set of unitaries S ≃ U(d). The
distribution ς is unitary k-design if and only if:

E
V→ϖ

[
V↓kOV †↓k

]
= E

U→µH

[
U↓kOU†↓k

]
, (25)

for all O → L
(
(Cd)↓k

)
.
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Unitary designs

For instance, consider a distribution ς where the set of unitaries S is discrete and each
unitary has an equal probability of being chosen. In this case, we have:

E
V→ϖ

[
V↓kOV †↓k

]
=

1

|S |
∑

V↗S
V↓kOV †↓k . (26)

Observation 25
A probability distribution ς is a unitary k-design if and only if:

E
V→ϖ

[
V↓k ↗ V ↔↓k

]
= E

U→µH

[
U↓k ↗ U↔↓k

]
. (27)
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Approximate unitary designs

To simplify the notation, we use U↓k,k := U↓k ↗ U↔↓k .

Definition 26 (Tensor Product Expander (TPE)-ω-approximate k-design)

Let φ > 0. We say that ς is a TPE φ-approximate k-design if and only if:
 E
V→ϖ

[
V↓k,k

]
↓ E

U→µH

[
U↓k,k

]
↘

⇓ φ. (28)
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(Approximate) Unitary designs in nearly optimal depth

Figure: Caption
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Frame potential

Definition 27 (Frame potential)

Let ς be a probability distribution defined over the set of unitaries S ≃ U(d). For a given

k → N, we define the k-frame potential, denoted as F (k)
ϖ , as follows:

F (k)
ϖ := E

U,V→ϖ

Tr
(
UV †

)
2k

. (29)

Definition 28 (k-invariant measure)

Let ς be a probability distribution defined over a set of unitaries S ≃ U(d). ς is
k-invariant if and only if, for any polynomial p(U) of degree ⇓ k in the matrix elements
of U and U↔, it holds

E
U→ϖ

[ p (U)] = E
U→ϖ

[ p (UV )] = E
U→ϖ

[ p (VU)] , (30)

for all V → S .
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Frame potential

Lemma 29

Let ς be a probability distribution defined over a set of unitaries S ≃ U(d). If ς is
k-invariant, then we have:

F (k)
ϖ = dim (Comm(S , k)) , (31)

where Comm(S , k) is the commutant subspace.
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Frame potential di!erecne

Lemma 30 (Frame potential di!erence)

Let F (k)
ϖ and F (k)

µH be the frame potentials of the probability distribution ς and the Haar
measure µH , respectively. Then, we have:

F (k)
ϖ ↓ F (k)

µH
=

 E
V→ϖ

[
V↓k ↗ V ↔↓k

]
↓ E

U→µH

[
U↓k ↗ U↔↓k

]
2

2

. (32)

It follows from the Lemma that showing that a distribution ς is a k-design can be
achieved by computing its frame potential and comparing it with that of the Haar
measure µH .
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Frame potential k-desgin condition

Proposition 31 (Frame potential k-design condition)

We have:

F (k)
ϖ ↑ F (k)

µH
= dim(span(Vd(ϖ) : ϖ → Sk)). (33)

Moreover, the equality holds if and only if ς is a k-unitary design.
In particular, if k ⇓ d , then dim(span(Vd(ϖ) : ϖ → Sk)) = k!.

32 / 39

Mobile User



Frame potential k-desgin condition

By utilizing this result, we can derive a straightforward lower bound on the cardinality of a
discrete set S of unitaries necessary to form a k-design. We can deduce that:

F (k)
ϖ =

1

|S |2
|S |∑

i ,j=1

Tr
(
UiU

†
j

)
2k

↑ 1

|S |2
|S |∑

i=1

Tr
(
UiU

†
i

)
2k

=
1

|S |d
2k . (34)

Furthermore, considering the fact that ς constitutes a k-design (with k ⇓ d), by the

previous proposition, we have that F (k)
ϖ = k!. This implies that the cardinality of the set

S must satisfy |S | ↑ d2k

k! . So, the cardinality of S must grow at least exponentially with
the number of qubits.
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Unitary k-design alternate definition

The following proposition provides equivalent definitions of unitary k-design:

Proposition 32 (Equivalent definitions of unitary k-design.)

Let ς be a probability distribution over a set of unitaries S ≃ U. Then, ς is a unitary
k-design if and only if:

1. E
U→ϖ

[
U↓kOU†↓k

]
= E

U→µH

[
U↓kOU†↓k

]
for all O → L

(
(Cd)↓k

)
.

2. E
V→ϖ

[
V↓k ↗ V ↔↓k

]
= E

U→µH

[
U↓k ↗ U↔↓k

]
.

3. F (k)
ϖ = dim (Comm(U(d), k)).

4. E
V→ϖ

[ p(V ) ] = E
U→µH

[ p(U) ] for all polynomials p(U) homogeneous of degree k in

the matrix elements of U and homogeneous of degree k in the matrix elements of U↔.
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Unitary 1-design

It is worth noting that any uniform distribution ς defined over a set of unitaries
S = {Ui}d

2

i=1 that forms a basis for L(Cd) and satisfies Tr(U†
i Uj) = d↼i ,j constitutes a

1-design. This can be easily proven by computing the frame potential as follows:

F (k=1)
ϖ =

1

|S |2
d2∑

i ,j=1

Tr(UiU
†
j )

2
=

1

d4

d2∑

i ,j=1

d2↼i ,j = 1 = dim(span(Vd(ϖ) : ϖ → S1)) (35)

Therefore, the uniform distribution defined over the Pauli basis P̃ := {I ,X ,Y ,Z}↓n is a
1-design, where n is the number of qubits and d = 2n.
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Unitary 1-design

The Flip operator can be elegantly represented in terms of the Pauli basis using the
following expression:

F =
∑

P,Q↗P̃

1

d2
Tr((P ↗ Q)F)P ↗ Q =

∑

P,Q↗P̃

1

d2
Tr(PQ)P ↗ Q =

∑

P↗P̃

1

d
P ↗ P , (36)

where we wrote the Flip operator in the Pauli basis and used the swap-trick. Also using
this, we can prove that the Pauli group forms a 1-design.(pset)
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Unitary 3-design

An important set of unitaries is the Cli!ord group Cl(n) i.e. the set of unitaries which
sends the Pauli group Pn in itself under the adjoint operation:

Cl(n) := {U → U(2n) : UPU† → Pn for all P → Pn}, (37)

where Pn := {ik}3k=0 ↖ {I ,X ,Y ,Z}↓n. It can be proven that the uniform distribution
over the Cli!ord group, forms a 3-design for all d = 2n, but it fails to be a 4-design.
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Cli!ord group

Moreover, it can be shown that any Cli!ord circuit can be implemented with
O(n2/ log(n)) gates from the set {H,CNOT, S} where H, CNOT and S are the
Hadamard, Controlled-NOT and Phase gate, respectively.

Cli!ord gates {H,CNOT, S} + non cli!ord T gate form universal quantum gates.
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Thanks a lot!
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