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Haar measure

Definition 1 (Haar measure)

The Haar measure on the unitary group U(d) is the robability measure py that is
bothand invariant over the group U(d), i.e., for all integrable functions f and

for all V € U(d), we have:

Lo f @)= [ r@anw)=[ @ amw). @)

The Haar measure is a probability measure, satisfying:
° fs 1dun(U) >0
° fU(d) ldun(U) =1

%)[f ] = fU(d) dHH U)
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Why Haar measure?

® Tool for analyzing randomness.

® Among the randomness, we have to find the answer. We can get the probability of

finding the answer. (Probjg .., [|f(#) — Epy~p,[f(¥)]] > €]). The calculations of
probability can lead to complexity.

® Applications in fidelity, channel calculations, concentration inequalities, quantum
machine learning, classical shadow tomography, etc.
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Haar measure properties

ki x 2
right ELQY) ®(Yj)\\//~—:—.& e%’

Proposition 2
Let ki, k2 € N. If ki # ko, then we have E [UPh g uek] 0@ JE L /7 |

U~piy ]

:k\;Kz

Proposition 3

For all integrable functions f defined on U(d), we have that:

E [f(UT)}: E [f(U)]. — ()

U~py Ur~py
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Moment operator

Definition 4 (k-th Moment operator)

The k-th moment operator, with respect to the probability measure upy, is defined as
ELIL :E(((Cd)®k) N E((@d)@k) :

M“)(O)::/E@UW} , (3)

HH UN@ —_— —

—_

for all operators O € L((C9)%k).

In order to characterize the moment operator, we need to define the k-th order
commutant of a set of matrices S.
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Definition 5 (Commutant)

Given(g)g L (Cd), we define its k-th order commutant as EA ! 3] = AB_ BA

Comm(S, k) = {A € L ((@d)®k) : [A, B@k] —0VBeS). (4)

It is worth noting that Comm(S, k) is a vector subspace.(pset)
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Properties of Moment operator

Lemma 6 (Properties of the moment operator)

The moment operator Mflk)(-) = UIE [U®K () UT®K] has the following properties:
~iH

1.

It is linear, trace-preserving, and self—adjoin}f\with respect to the Hi/bertiéfhmidt
inner product. <MMr: (&), 8D = <A , Moo (Q)>
For all A € £ ((C)®K), MY (A) € Comm(U(d), k).

If A € Comm(U(d), k), then M) (A) = A.
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Projector onto the commutant

Theorem 7 (Projector onto the commutant)

The moment operator ,(j;,)() UIE [U®k () UT®K] is the orthogonal projector onto
~pH
the commutant Comm = Comm(U(d), k) with respect to the Hilbert-Schmidt inner

product._In_particular, let P1, ... Pqim(Comm) be an orthonormal basis of Comm and let
Oe (((Cd)® . Then, we have \_,) extended bass Pupl, . Pd.m(\/)

3 V dim(Comm)

v/
MEE(O) = Z @0>H5@
énMLul = A:M(m!n) 3

n

= Z\‘ 402,05 P2 <0, M/ur\(?z,\ H = =<0 1)732
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Permutation operators

Definition 8 (Permutation operators)

Given m € Sk an element of the symmetric group Sy, we define the permutation matrix
V() to be the unitary matrix that satisfies:

@lbﬁ R ® k) = [Yr=11) ® -+ R [WWr—143) (6)

for all [s1), ..., |vx) € C.
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Schur-Weyl duality

Theorem 9 (Schur-Weyl duality)

The k-th order commutant of the unitary group is the span of the permutation operators
associated to Sy:

Comm(U(d), k) = span (Vd(w) I TE 5k>. (7)

Easy to check that span (Vd(w) S TE 5k> C Comm(U(d), k). Y€ VK(.4 )
How about Comm(U(d), k) C span (Vd( ): e Sk>7(pset) \/A(((\UQ‘ U\/&Uﬂ_
Ua () 1@ - @ 1Y = Valt) (rrS © - @ T1rK)
— V@) YD OO
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Permutation operators
Proposition 10

For m € Sk, the permutation matrices V() are linearly independent if k < d, but
linearly dependent if k > d.

Definition 11 (ldentity and Flip operators)

The identity permutation operator I is:
I(Y) @) =) ®|¢),  forall [),]4) € C7. (8)

The Flip operator F is:
(o

Swet F(lp) @) =1o) @),  forall[¢),[¢) € C. (9)

Tr((A® B) F) = Tr(AB).
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Computing moments

Theorem 12 (Computing moments)

Let O € L ((Cd)®k). The moment operator can then be expressed as a linear

where the coefficients c;(O) can be determinefl by solving the following linear system of
k! equations:

(11)

This system always has at least one solution.

Examples on the next slides.
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Computing moments examples

Comm(U(d), k = 1) = span (l), (12)

Comm(U(d), k = 2) = span (]I,IF‘). (13)

Prove this.(pset)
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Computing moments examples

Example 14 (First and second moment)

Given O € L (Cd), we have:
E |vout| = Tr(0), (14)
U~py d
Given O € L((C9)%2), we have:
E [U®20UT®2} = a0l + cp oF, (15)
Ur~py

Deduce ¢ 0, ¢r,0 with Theorem 10.(pset)
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Symmetric Subspace

Definition 15 (Symmetric subspace)

Symy(C9) = { ) € (C4)*: @w = [¢) V7 € Sk} (16)
To facilitate our analysis, we also define the operator P(ym) as follows:
d k)
PLEE) = o Z Vy(m (17)
TES)
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Projector on symmetric subspace

Theorem 16 (Projector on Sym, (C?))

Ps(;,jm) is the orthogonal projector on the symmetric subspace Sym, (C?).

We also have Sym, (CY) = Im (PS(%)).

&k (k) * (kY
Vé— (n ) PSY(d ) = Ps‘[w ) '_) PST""‘ PS‘(\M Pf"w - Ps‘fm
' Oﬂ:\/\OU el o’ 3

Poym 11 € Syme(C*) _>1M(Ps~fm)c SymeCC?)

$ ) € Smr(e?) | Pop#) = ) v)f'\/e(«\l'\’) =Y =
=) Sy« (Cd\ C T (Psyen) 16/39
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Dimension of symmetric subspace

Theorem 17 (Dimension of the symmetric subspace)
If d > k, we have

Tr(PL9) = dim (Sym, (€?)) = (k + Z - 1). (18)

O ———

. (d,k)\
otherwise Tr<PSyrn ) =0. Nk q\.,i,g---. 4+ V\(\L =

[ )
Psee ) 22) - 128D
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Anti-symmetric subspace

Definition 18 (Anti-symmetric subspace)

The anti-symmetric subspace is the set:

ASym, (C7) = { [¢) € (C)®*: Vo(r) [9) =@@n (m))¥) Y7 € S}, (19)
where sgn (o) denotes the sign of a permutation o € Sy. "
Similarly as before, we can define the operator: )
ﬂ'ESk
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Projector on anti-symmetric subspace

Theorem 19
ng’y”r‘g is the orthogonal projector on the anti-symmetric subspace ASym, (C?).

We also have Im (Pgsy’ﬁ}) = ASym,(C9).

Proposition 20 (Dimension of the anti-symmetric subspace)

If d > k, we have:

Tr(ngyfg) = dim (ASymk(Cd)) - (Z) (21)

otherwise Tr<Pi§g}}fn)> =0.
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Symmetric and anti-symmetric subspace relation

Proposition 21
d,k)

We have Pégy’QTPg;rf) = 0. In particular P&S};m and P(yr’n) are orthogonal with respect to
the Hilbert-Schmidt inner product.

We can deduce (C%)%?)= @ ® @)

= - Sqneny Va(a (;—- Sgw() (%91%::;§)
POSTW\ PSYw\ - K ESK () ) PS-(M )

(B« (3) = ¢
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Haar measure on states

Definition 22 (Haar measure on states)

Given a state |¢) in C?, we denote O = 94§ oE
E ®k — ®k Q 22
ﬂ@[w | E [(5)10) (22)
Moreover, we have: Cr = ((Sﬂ
: Munln = CzK! Psy
=f—=——. . "(23)
CL = et (Popwd

veesk, Valo') Mun D (1 \F) = 7 ¢ Va (67)Va ()
GPE a6 RF =g P

1"
Corva(n)
VaCS™Y) Munt™ ((85¢91RK) = Mun™L 7)) Py
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Questions?
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Spherical designs

Definition 23 (Spherical t-design)

Let P; : S(RY) — R be a polynomial in d variables, with all terms homogeneous in degree
most t. A set X = {x: x € S(R)} is a spherical t-design if

ML A= [ P (29

xeX

holds for possible VP, where du is the uniform, normalized spherical measure.
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Spherical designs

For example, f(x,y,z) = x* — 4x3y + y?z? then compute the average value of f by using
spherical 4-design on the figure.
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Unitary designs

Generating Haar random unitaries on a quantum computer could be expensive. (Most
unitaries require an exponential number of elemantary gates)

Definition 24 (Unitary k-design)
Let v be a probability distribution defined over a set of unitaries S C U(d). The
distribution v is unitary k-design if and only if:

ﬁ@ [v®kovf®k} - U%[U‘X’@OUT@@] : (25)

for all O € £ ((C9)%k). 0 = 756)8.&)__'_\@)0&-1
AR
_..f-

25/39


Mobile User


Unitary designs

For instance, consider a distribution v where the set of unitaries S is discrete and each
unitary has an equal probability of being chosen. In this case, we have:

i [v®kovT®k} == )" v®koviek, (26)

Vv S| @

Observation 25
A probability distribution v is a unitary k-design if and only if:

£ [vovelQs, [wou] s
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Approximate unitary designs

To simplify the notation, we use UKk .= &k g (*®k, dlamond rnorm

Definition 26 (Tensor Product Expander (TPE)-c-approximate k-design)

Let € > 0. We say that v is a @a—approximate k-design if and only if:

E |[Vekk| - E [uskd]
Vv Ur~py

<e. (28)
&)

7
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(Approximate) Unitary designs in nearly optimal depth

( APPfox)

\Y/
Unitary designs in fearly optimaliydepth

Laura Cui,’* Thomas Schuster,? 3 * Fernando Brandao,*! and Hsi

-Yuan Huang!?
L nstitute for Quantum Information and Matter and Department of Physics,
California Institute of Technology, Pasadena, California 91125, USA
* Walter Burke Institute for Theorctical Physics, California Institute of Technology, Pasadena, California 91125, USA
3Google Quantum Al Venice, California 90291, USA K X log
SAWS Center for Quantum Computing, Pasadena, California 91125, USA °y

5 . . ) T K3 log n
We construct s-approximate unitary k-designs on n qubits in circuit depth O(log klog log nk/<).
The depth is exponentially improved over all known results in all three parameters 1, k, €. We further n
show that each dependence is optimal up to exponentially smaller factors. Our construction uses
O(nk) ancilla qubits and O(nk) bits of randomness, which are also optimal up to log(nk) factors. An  leg v

alternative construction achieves a smaller ancilla count O(n) with circuit depth O(k log log nk/e). D D D
To achieve these efficient unitary designs, we introduce a highly-structured random unitary ensemble

that le long-range two-qubit s and low-depth implementations of random cla hash D D
functions. We also develop a new analytical framework for bounding errors in quantum experiments
involving many queries to random unitaries. As an illustration of this framework’s versatility, we olue

provide a succinct alternative proof of the existence of pseudorandom unitaries.

Random unitaries are ubiquitous across quantum sci-
ence, serving both as fundamental theoretical tools and
practical building blocks for quantum technologies. They
provide useful models for understanding chaotic many-
body dynamics [1-3], quantum gravity phenomena [4-6],
and thermalization in isolated quantum systems [7-9].
Beyond their theoretical significance, random unit;
have been ential for device benchmarking [10-12],
state tomography [13-15], quantum advantage demon-
strations [lﬂ 18], and quantum cryptography [l‘] 21]_ FIG. 1. Schematic of our low-depth constructions of state
From an analytical perspective, the uniform Haar mea-
sure over unitaries enables tractable mathematical inves-
tications through its elegant

FRF [T HE R T

S

& = O(log nk/) qubits

vl [quant-ph] 8 Jul 2025
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Frame potential

Definition 27 (Frame potential)

Let v be a probability distribution defined over the set of unitaries S C U(d). For a given
k € N, we define the k-frame potential, denoted as ]-',Sk), as follows:

g 0]

Definition 28 (k-invariant measure)

Let v be a probability distribution defined over a set of unitaries S C U(d). v is
k-invariant if and only if, for any polynomial p(U) of degree g@in the matrix elements
of U and U*, it holds

E [p(U)= E [p(UV)]= E [p(VU)], (30)

U~v ~V ~U

forall V € S.
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Frame potential

Let v be a probability distribution defined over a set of unitaries S C U(d). If(v)is
k-invariant, then we have:

F) = dim (Comm(S, k)), (31)

where Comm(S, k) is the commutant subspace.

RO= E Uwcovh(® 1 = EVlvon] "= E Cveo) o) ]

V,Vvr—v Vv

- o (EWBU™]) = dwn(Comm(s, k)
TN TN
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Frame potential differecne

Lemma 30 (Frame potential difference)

Let ¥ and F\¥) be the frame potentials of the probability distribution(i; and the Haar
measure@, respectively. Then, we have:

|/\ ./—';Ek) — ‘Fl(]lfl) =] ‘ (K [V®k ® V*®k] . \]E |:U®k ® U*®k:|:

) (v Uncpy (32)

2

It follows from the Lémma that showing that a distribution @)is a_k-design can be
achieved by computing its frame potential and comparing it with that of the Haar
measure [iy.
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Frame potential k-desgin condition

Proposition 31 (Frame potential k-design condition)
We have:

(Psee)
]:é)k) > @} dim(span(Vy(7) : 7 € Sk)). (33)

Moreover, the equality holds if and only if v is a k-unitary design.
In particular, if k < d, then dim(span(Vy(7) : ™ € Sk)) =\k!.
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Frame potential k-desgin condition

By utilizing this result, we can derive a straightforward lower bound on the cardinality of a
discrete set S of unitaries necessary to form a k-design. We can deduce that:

s
<\ :@: 5 E’ (uuT =5 %‘Tr UUT ;d”‘. (34)

Furthermore, considering the fact that v constitutes a k-design (with k < d), by the

previous proposition, We have that ]:,Sk) = k!. This implies that the cardinality of the set
S must satisfy |S| > <. So, the cardinality of S must grow at least exponentially with

2K

d
the number of qub|ts. 5] 2 = d=2"
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Unitary k-design alternate definition

The following proposition provides equivalent definitions of unitary k-design:

Proposition 32 (Equivalent definitions of unitary k-design.)

Let v be a probability distribution over a set of unitaries S C U. Then, v is a unitary
k-design if and only if:
1. E [UPkOUT® ] = E [U®XOUT®K] for all O € L ((C9)%k).

U~v U~y

2. E [V @ VK = E [U% g U*®K].
V~v UN/LH

3. F9 = dim (Comm(U(d), k)).
4. VE [p(V)] = UE [p(U)] for all polynomials p(U) homogeneous of degree k in
~V ~HH

the matrix elements of U and homogeneous of degree k in the matrix elements of U*.
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Unitary 1-design

It is worth noting that any uniform distribution v defined over a set of unitaries
S= {U;}f’il that forms a basis for £(C?) and satisfies Tr( U,TUJ) = dJ; j constitutes a
1-design. This can be easily proven by computing the frame potential as follows:

1
(k=1) t 2 ,
@ 512 2 ‘Tr(U ul) ‘ d4 E d°o;j —& dim(span(Vy(7) : m € 51)) (35)

ij=1

Therefore, the uniform distribution defined over the Pauli basis P := {1,X,Y,Z}®" s a
1-design, where n is the number of qubits and d = 2".

I,%5X,2 I T®OXQZ2RYR - 60X
tor

oV Ut %@{‘ X/ X 3 X

0 — i? O\,;L@OD,'2® @O}"L
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Unitary 1-design

The Flip operator can be elegantly represented in terms of the Pauli basis using the
following expression: — -

F= 2 %W’D@Q: ZNdlzTr(PQ)PQ@Q—Z;P@P, (36)

~ P ~
P,QeP P,QeP PcP

where we wrote the Flip operator in the Pauli basis and used the swap-trick. Also using

this, we can prove that the Pauli group forms a 1-design.(pset)
o——
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Unitary 3-design

An important set of unitaries is the Clifford group Cl(n) i.e. the set of unitaries which
sends the Pauli group P, in itself under the adjoint operation:

Cl(n) = {U € U(2"): UPU! e@for all P e Py}, (37)

where P, := {i¥ i:o x {I,X,Y,Z}®" It can be proven that the uniform distribution
over the Clifford group, forms a 3-design for all d = 2", but it fails to be a_4-design.

@) Q/\Q/ Lb(o V\)
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Clifford group

Moreover, it can be shown that any Clifford circuit can be implemented with
O(n?/log(n)) gates from the set {H)CNOT}S}) where H, CNOT and S are the
Hadamard, Controlled-NOT and Phase g e, réspectively.

Clifford gates {H, CNOT,S} + non cliffordf form universal quantum gates.

L

C(CLSQ:CZQQ
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Thanks a lot!



