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Quantum State Certification

® A tester is given the complete description of a quantum
state 0 € C?*? and n copies of an unknown state p € C9*9.

* Promised that p=0c or |[p—ol]1 > e

¢ c-certifying o: distinguishing between these cases with high
probability.



Motivation

® Benchmarking quantum devices.

® Verifying heuristic quantum learning algorithms.

Also, a direct quantum analogue of identity testing in classical
distribution testing:

Given the description of a distribution g, and n samples from an
unknown distribution p, test whether p = q or ||p — q||1 > €.
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What is the optimal copy complexity of state certification?

® [OW15] established a Q(d/e?) lower bound for mixedness
testing, i.e., when 0 = 1/d.

[OW15]: Quantum spectrum testing; O'Donnell-Wright 2015.
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® [OW15] established a Q(d/e?) lower bound for mixedness
testing, i.e., when 0 = 1/d.
* [BOW19] developed an algorithm using O(d/e?) copies to
certify any state.
* This establishes a tight worst-case complexity: ©(d/e?).

[OW15]: Quantum spectrum testing; O'Donnell-Wright 2015.
[BOW19]: Quantum state certification; B3descu-O'Donnell-Wright 2019.
NG YA SN =~ Instance-Optimal State Certification | IV B



Worst-Case Bounds

What is the optimal copy complexity of state certification?

® [OW15] established a Q(d/e?) lower bound for mixedness
testing, i.e., when 0 = 1/d.

* [BOW19] developed an algorithm using O(d/e?) copies to
certify any state.

* This establishes a tight worst-case complexity: ©(d/e?).

® But the problem could be much easier for other choices of o!

[OW15]: Quantum spectrum testing; O'Donnell-Wright 2015.
[BOW19]: Quantum state certification; B3descu-O'Donnell-Wright 2019.
NG YA SN =~ Instance-Optimal State Certification | IV B



Worst-Case Bounds

What is the optimal copy complexity of state certification?
® [OW15] established a Q(d/€?) lower bound for mixedness
testing, i.e., when 0 = 1/d.

[BOW19] developed an algorithm using O(d/€?) copies to
certify any state.

This establishes a tight worst-case complexity: ©(d/e?).

But the problem could be much easier for other choices of ¢!
For e.g., when o is pure, O(1/€?) copies suffice [MdW16].

[OW15]: Quantum spectrum testing; O'Donnell-Wright 2015.
[BOW19]: Quantum state certification; Badescu-O'Donnell-Wright 2019.
[MdW16]: A survey of quantum property testing; Montanaro-de Wolf 2016.
NG YA SN =~ Instance-Optimal State Certification | IV S
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Instance-Optimal State Certification

How does the optimal copy complexity depend on o ?

® [CLO22,CLHL22] have answered this question when testers
can only perform single-copy measurements.

[CLO22]: Toward instance-optimal state certification with incoherent

measurements; Chen-Li-O'Donnell 2022
[CLHL22]: Tight bounds for quantum state certification with incoherent

measurements; Chen-Li-Huang-Liu 2022
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Instance-Optimal State Certification

How does the optimal copy complexity depend on o ?

e [CLO22,CLHL22] have answered this question when testers
can only perform single-copy measurements.

® We even have classical bounds for instance-optimal identity
testing in various forms [VV17, DK16, BCG19].

[VV17]: An automatic inequality prover and instance optimal identity testing;

Valiant-Valiant 2017.
[DK16]: A new approach for testing properties of discrete distributions;

Diakonikolas-Kane 2016.
[BCG19]: Distribution testing lower bounds via reductions from

communication complexity; Blais-Canonne-Gur 2019.
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Instance-Optimal State Certification

How does the optimal copy complexity depend on o ?

e [CLO22,CLHL22] have answered this question when testers
can only perform single-copy measurements.

® We even have classical bounds for instance-optimal identity
testing in various forms [VV17, DK16, BCG19].

® However, when quantum testers are unrestricted,
instance-optimal bounds were not known.
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Nearly Instance-Optimal Bounds

Theorem (Main Result)

With fully entangled measurements, the copy complexity n of
e-certifying o satisfies

5 (d- F(g,n/d)) P (d- F(E,ﬂ/d)) |

€2 €2

0,0 are variants of o constructed by zeroing out suitable
eigenvalues adding up to O(e), O(e?) respectively.
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Nearly Instance-Optimal Bounds

Theorem (Main Result)

With fully entangled measurements, the copy complexity n of
e-certifying o satisfies

5 (d- F(g,n/d)> P (d- F(E,ﬂ/d)) |

€2 €2

0,0 are variants of o constructed by zeroing out suitable
eigenvalues adding up to O(e), O(e?) respectively.

* For o =1/d, n=6(d/é).
* For pure o, n = ©(1/€?).



Mixedness Testing Lower Bound

® Our main theorem recovers the mixedness testing bounds up
to log(d/¢) factors.

® Directly applying our techniques to mixedness testing, we
actually recover Q(d/€?) without any log factors!

® With our new lower bound technique, this proof is much
simpler than that of [OW15]!
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Mixedness Testing: Prior Techniques

¢ di,(0,1/d) depends only on ¢'s eigenvalues.

® For such spectrum tests, weak Schur sampling is known to
be optimal [CHW07,MdW16].

® [OW15] then prove the mixedness testing lower bound by
analyzing the resulting Schur-Weyl distributions.

[CHWOT]: Weak Fourier-Schur sampling, the hidden subgroup problem, and
the quantum collision problem; Childs-Harrow-Wocjan 2007.
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Mixedness Testing: Prior Techniques

¢ di,(0,1/d) depends only on o's eigenvalues.

® For such spectrum tests, weak Schur sampling is known to
be optimal [CHW07,MdW16].

® [OW15] then prove the mixedness testing lower bound by
analyzing the resulting Schur-Weyl distributions.

® Can't even be used for certifying nearly maximally mixed
states: e.g. states with spectrum

112 2
(5599053 )-

2d/3 d/3
We need a new way to prove the mixedness testing lower bound!
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Classical Lower Bound Techniques

® Given n samples from an unknown distribution, distinguish
between the following equally likely cases:
1. All n samples are drawn from some fixed distribution g.
2. A random parameter @ is drawn, then n samples are drawn
from qg.

® Any algorithm succeeds at this task w/ prob at most
3+ 5 - drv(Eelg§ "], ).

Relate to y2-divergence: dpy < %« /d,e.
n must be large enough so that d,2(Eg[qg"][|g®") > c.

Use the Ingster-Suslina method [IS12] to explicitly compute

d,2 and easily upper bound it.

[IS12]: Nonparametric goodness-of-fit testing under Gaussian models;
Ingster-Suslina 2012.
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Our Lower Bound Techniques

® Given n copies of an unknown state, distinguish between the
following equally likely cases:
1. We receive n copies of a fixed state o.
2. A random parameter @ is drawn, then we receive n copies of
some state og.

® Any algorithm succeeds at this task w/ prob at most
343 du(Boloy"], o®").

Relate to quantum y?-divergence: d;; < %, /Dya.
®
n must be large enough so that D,2(Egy[og Mo®™) > c.

New Tool: A quantum Ingster-Suslina method to explicitly
compute D, and easily upper bound it!
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Quantum Y?-divergence

Given two states p, o, let A = p — o. Then,
D,2(pllo) = tr (0_1A2> = tr(a_lpz) -1

Want to upper bound D, 2(Eg[og"]||o®").



A Quantum Ingster-Suslina Method

We show:
D,2(Eg[og"[lc®") + 1 = Eg /(1 + Z(6,6))"
where

2(0,9/) = tr<U_1A9A9/> and Ag =09 — 0.
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We show:
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A Quantum Ingster-Suslina Method

We show:
D,» (Eg[ag,@”] |6¥")+1 = Eg o/ (1+2(0,6’))" < Eg g/ exp(nZ(O, 0')),
where

7(6,6") = tr(a_lAgAg/> and Ag = og — 0.

Usage for certification lower bounds:
1. Construct a suitable mixture of alternatives {og}g.
2. Upper bound Eg ¢/ exp(nZ(0,0")).
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Mixedness Testing

Want a lower bound for testing p = 1/d or ||p — 1/d||1 > e.

® Quantum Paninski Construction:

1
oyt -+ guzuf,

where ¥ = diag(+1,-1,...,+1,—1) and U ~ U(d).
© Z(U,V) = tr(0 7 AuAy) = G tr(UZUTVEVT),

® We use standard Haar-measure concentration inequalities to
bound Ey,v exp(nZ(U, V)) and get:

n C - n%e
DX2(Eu[J% ][[e®") < exp (c12> =1,
This is (1) only if n = Q(d/2).
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Lower Bounds for Nearly Mixed States

The same technique also works for nearly maximally mixed states!
In general, for well-conditioned states o, we show:

d5/2
n>Q ——— |-
- <e2-||a—1||2>

For nearly mixed o, |73 = d x O(d?) = O(d3).

= n > Q(d/e?).



Small Eigenvalues

d°/2
n>Q( 5——1.
- <e2~||o-1uz>

But this bound is not always strong enough!

Consider, e.g., o with spectrum = (Q(1/d),...,Q(1/d),1/d?).



Small Eigenvalues

J5/2
n>Q <Mr%> .
But this bound is not always strong enough!
Consider, e.g., o with spectrum = (Q(1/d),...,Q(1/d),1/d?).
Such a state has
lo~2 = O((d = 1) - d*) + d* = O(d*).

This only results in a Q(v/d/€?) bound.



Small Eigenvalues

J5/2
n>Q <‘w> .
But this bound is not always strong enough!
Consider, e.g., o with spectrum = (Q(1/d),...,Q(1/d),1/d?).
Such a state has
lot3 = O((d — 1) - d?) + d* = O(d").

This only results in a Q(v/d/€?) bound.
= We place too much emphasis on the smallest eigenvalues!
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Bucketing and Mass Removal

e WLOG, we assume
g = diag()\l, o )\d)

® Group A;s into buckets:
i€Sif A\ €277t 27).

® Group some small \;s
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Bucketing and Mass Removal

WLOG, we assume

g = diag()\l, o )\d)
Group Ajs into buckets: Tj,
i€Sif A\ €277t 27).

Group some small \;s

g1

adding up to O(e) into Stap-

Otail
o :otaﬂ@@aj. tal

J
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Mixture of Alternatives

o Chxdisy; £
diag(+1,-1,...,+1,-1).

A £ erJ-ZJ-UjT, where
€;j < 2_j_1, Uj ~ U(dj) and
Zj €jdj > €.

o Let U= (Uy,...,Upn).

¢ o = Otail D @(O’j a4F AJ').
J

Ty

Otail
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Decomposition into Independent RVs

Z(0,V) =tr(08gAy) = > tr(o A5A1).
j

o3 A0
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Final Steps

D+1< HEUj,w exp (n : tr(aj._lAjAD).
J

= We just need to bound each expectation!

This yields
-1/2

n=q S
J

This does give n > Q (%), but takes some work:
* Pick {e;}.
e Corner cases: all buckets have d; = 1 or [|pls > 3.

Details in the paper (Section 5)
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Tools from Prior Work

[CLO22] showed that if |p — 0|1 > €, then there are a few
“simpler” ways in which these states can be far.

= They test for each such case with an
unentangled-measurement Hilbert-Schmidt certifier.

= We replace this with an entangled-measurement certifier.

Theorem (Hilbert-Schmidt Tester from [BOW19])

There exists an algorithm HSCertify that can distinguish between
p=oc and ||p— o|l2 > € using O(1/€?) copies of p.
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Upper Bound: Case 1

Case 1: The unknown state has
too much weight on the tail.




Upper Bound: Case 1

Case 1: The unknown state has
too much weight on the tail.

Can be tested for with O(1/¢?)
(unentangled!) measurements
(from [CLO22]).




Upper Bound: Case 2

Case 2: For some bucket j,
lpj — |1 is too large.




Upper Bound: Case 2

Case 2: For some bucket j,
lpj — |1 is too large.

After simple pre-processing,
projecting and then passing to
HSCertify, this can be handled
with O (@) copies of p.
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Case 3: For some buckets j, //,
the non-principal submatrices are
too far.
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Case 3: For some buckets j, //,
the non-principal submatrices are
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Upper Bound: Case 3

Case 3: For some buckets j, //,
the non-principal submatrices are

too far.

Assuming Case 2 does not hold,
this can again be handled with

o (@) copies of p.

Total complexity: Case 1 + Case 2 + Case 3 = O (w)
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Discussion
We have shown nearly instance-optimal bounds for state
certification with entangled measurements:

& <d. F(U2,Il/d)> Sy <d- F(a,ﬂ/d)) |

€ €2

Open Questions:
® The amounts of mass removed to get g, do not match; can
this be overcome?
® What about state certification with t-copy measurements,
with 1 < t < d/e?? [CCHL21] have some partial results, but
even worst-case bounds remain open.

[CCHL21]: A hierarchy for replica quantum advantage; Chen-Cotler-Huang-Li
2021.
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Discussion

We have shown nearly instance-optimal bounds for state
certification with entangled measurements:

& (d- F(a,]l/d)) e <d- F(a,]l/d)) |

€2 €2

Open Questions:

® The amounts of mass removed to get g, do not match; can
this be overcome?

® What about state certification with t-copy measurements,
with 1 < t < d/e?? [CCHL21] have some partial results, but
even worst-case bounds remain open.

Thank you!
arxiv:2507.06010
chirag.wadhwa®ed.ac.uk
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