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Quantum State Certification

• A tester is given the complete description of a quantum
state σ ∈ Cd×d and n copies of an unknown state ρ ∈ Cd×d .

• Promised that ρ = σ or ∥ρ− σ∥1 ≥ ϵ.

• ϵ-certifying σ: distinguishing between these cases with high
probability.
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Motivation

• Benchmarking quantum devices.

• Verifying heuristic quantum learning algorithms.

Also, a direct quantum analogue of identity testing in classical
distribution testing:

Given the description of a distribution q, and n samples from an
unknown distribution p, test whether p = q or ∥p − q∥1 ≥ ϵ.
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Worst-Case Bounds

What is the optimal copy complexity of state certification?

• [OW15] established a Ω(d/ϵ2) lower bound for mixedness
testing, i.e., when σ = 1/d .

• [BOW19] developed an algorithm using O(d/ϵ2) copies to
certify any state.

• This establishes a tight worst-case complexity: Θ(d/ϵ2).

• But the problem could be much easier for other choices of σ!

• For e.g., when σ is pure, O(1/ϵ2) copies suffice [MdW16].
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Instance-Optimal State Certification

How does the optimal copy complexity depend on σ?

• [CLO22,CLHL22] have answered this question when testers
can only perform single-copy measurements.

• We even have classical bounds for instance-optimal identity
testing in various forms [VV17, DK16, BCG19].

• However, when quantum testers are unrestricted,
instance-optimal bounds were not known.
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Nearly Instance-Optimal Bounds

Theorem (Main Result)

With fully entangled measurements, the copy complexity n of
ϵ-certifying σ satisfies

Ω̃

(
d · F (σ,1/d)

ϵ2

)
≤ n ≤ Õ

(
d · F (σ,1/d)

ϵ2

)
.

σ, σ are variants of σ constructed by zeroing out suitable
eigenvalues adding up to O(ϵ),O(ϵ2) respectively.

• For σ = 1/d , n = Θ̃(d/ϵ2).

• For pure σ, n = Θ̃(1/ϵ2).
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Mixedness Testing Lower Bound

• Our main theorem recovers the mixedness testing bounds up
to log

(
d/ϵ
)
factors.

• Directly applying our techniques to mixedness testing, we
actually recover Ω(d/ϵ2) without any log factors!

• With our new lower bound technique, this proof is much
simpler than that of [OW15]!
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Mixedness Testing: Prior Techniques

• dtr(σ,1/d) depends only on σ’s eigenvalues.

• For such spectrum tests, weak Schur sampling is known to
be optimal [CHW07,MdW16].

• [OW15] then prove the mixedness testing lower bound by
analyzing the resulting Schur-Weyl distributions.

• Can’t even be used for certifying nearly maximally mixed
states: e.g. states with spectrum( 1

2d
, . . .

1

2d︸ ︷︷ ︸
2d/3

,
2

d
, . . .

2

d︸ ︷︷ ︸
d/3

)
.

We need a new way to prove the mixedness testing lower bound!
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[CHWO7]: Weak Fourier-Schur sampling, the hidden subgroup problem, and
the quantum collision problem; Childs-Harrow-Wocjan 2007.
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Classical Lower Bound Techniques

• Given n samples from an unknown distribution, distinguish
between the following equally likely cases:

1. All n samples are drawn from some fixed distribution q.
2. A random parameter θ is drawn, then n samples are drawn

from qθ.

• Any algorithm succeeds at this task w/ prob at most
1
2 + 1

2 · dTV(Eθ[q
⊗n
θ ], q⊗n).

• Relate to χ2-divergence: dTV ≤ 1
2

√
dχ2 .

• n must be large enough so that dχ2(Eθ[q
⊗n
θ ]∥q⊗n) ≥ c.

• Use the Ingster-Suslina method [IS12] to explicitly compute
dχ2 and easily upper bound it.
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[IS12]: Nonparametric goodness-of-fit testing under Gaussian models;
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Our Lower Bound Techniques

• Given n copies of an unknown state, distinguish between the
following equally likely cases:

1. We receive n copies of a fixed state σ.
2. A random parameter θ is drawn, then we receive n copies of

some state σθ.

• Any algorithm succeeds at this task w/ prob at most
1
2 + 1

2 · dtr(Eθ[σ
⊗n
θ ], σ⊗n).

• Relate to quantum χ2-divergence: dtr ≤ 1
2

√
Dχ2 .

• n must be large enough so that Dχ2(Eθ[σ
⊗n
θ ]∥σ⊗n) ≥ c .

• New Tool: A quantum Ingster-Suslina method to explicitly
compute Dχ2 and easily upper bound it!
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Quantum χ2-divergence

Given two states ρ, σ, let ∆ = ρ− σ. Then,

Dχ2(ρ∥σ) = tr
(
σ−1∆2

)
= tr

(
σ−1ρ2

)
− 1.

Want to upper bound Dχ2(Eθ[σ
⊗n
θ ]∥σ⊗n).
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A Quantum Ingster-Suslina Method

We show:

Dχ2(Eθ[σ
⊗n
θ ]∥σ⊗n) + 1 = Eθ,θ′(1 + Z (θ,θ′))n

where

Z (θ,θ′) = tr
(
σ−1∆θ∆θ′

)
and ∆θ = σθ − σ.

Usage for certification lower bounds:

1. Construct a suitable mixture of alternatives {σθ}θ.
2. Upper bound Eθ,θ′ exp

(
nZ (θ,θ′)

)
.
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Mixedness Testing

Want a lower bound for testing ρ = 1/d or ∥ρ− 1/d∥1 ≥ ϵ.

• Quantum Paninski Construction:

σU ≜
1

d
+

ϵ

d
UΣU†,

where Σ = diag(+1,−1, . . . ,+1,−1) and U ∼ U(d).

• Z (U ,V ) = tr
(
σ−1∆U∆V

)
= ϵ2

d tr
(
UΣU†VΣV †

)
.

• We use standard Haar-measure concentration inequalities to
bound EU,V exp

(
nZ (U ,V )

)
and get:

Dχ2(EU [σ
⊗n
U ]∥σ⊗n) ≤ exp

(
C · n2ϵ4

d2

)
− 1.

This is Ω(1) only if n = Ω(d/ϵ2).
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• We use standard Haar-measure concentration inequalities to
bound EU,V exp

(
nZ (U ,V )

)
and get:

Dχ2(EU [σ
⊗n
U ]∥σ⊗n) ≤ exp

(
C · n2ϵ4

d2

)
− 1.

This is Ω(1) only if n = Ω(d/ϵ2).
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Lower Bounds for Nearly Mixed States

The same technique also works for nearly maximally mixed states!
In general, for well-conditioned states σ, we show:

n ≥ Ω

(
d5/2

ϵ2 · ∥σ−1∥2

)
.

For nearly mixed σ, ∥σ−1∥22 = d ×O(d2) = O(d3).

=⇒ n ≥ Ω(d/ϵ2).
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Small Eigenvalues

n ≥ Ω

(
d5/2

ϵ2 · ∥σ−1∥2

)
.

But this bound is not always strong enough!

Consider, e.g., σ with spectrum =
(
Ω(1/d), . . . ,Ω(1/d), 1/d2

)
.

Such a state has

∥σ−1∥22 = O((d − 1) · d2) + d4 = O(d4).

This only results in a Ω(
√
d/ϵ2) bound.

⇒ We place too much emphasis on the smallest eigenvalues!
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Bucketing and Mass Removal

• WLOG, we assume
σ = diag(λ1, . . . λd).

• Group λi s into buckets:
i ∈ Sj if λi ∈ [2−j−1, 2−j).

• Group some small λi s
adding up to O(ϵ) into Stail.

• σ = σtail ⊕
⊕
j
σj .
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Mixture of Alternatives

• Cdj×dj ∋ Σj ≜
diag(+1,−1, . . . ,+1,−1).

• ∆j ≜ ϵjUjΣjU
†
j , where

ϵj ≤ 2−j−1,Uj ∼ U(dj) and∑
j ϵjdj ≥ ϵ.

• Let U⃗ = (U1, . . . ,Um).

• σU⃗ ≜ σtail ⊕
⊕
j
(σj +∆j).
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Decomposition into Independent RVs

Dχ2(EU⃗ [σ
⊗n

U⃗
]∥σ⊗n) = EU⃗,V⃗

[
(1 + Z (U⃗ , V⃗ ))n

]
− 1,

where

Z (U⃗ , V⃗ ) = tr
(
σ−1∆U⃗∆V⃗

)
.
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Decomposition into Independent RVs

σ−1
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Decomposition into Independent RVs

Z (U⃗ , V⃗ ) = tr
(
σ−1∆U⃗∆V⃗

)
=
∑
j

tr
(
σ−1
j ∆j∆

′
j

)
.
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Final Steps

Dχ2 + 1 ≤ EU⃗,V⃗ exp
(
n · Z (U⃗ , V⃗ )

)
= EU⃗,V⃗ exp

∑
j

n · tr
(
σ−1
j ∆j∆

′
j

)
=
∏
j

EUj ,Vj
exp

(
n · tr

(
σ−1
j ∆j∆

′
j

))
.
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Final Steps

Dχ2 + 1 ≤
∏
j

EUj ,Vj
exp

(
n · tr

(
σ−1
j ∆j∆

′
j

))
.

⇒ We just need to bound each expectation!

This yields

n = Ω

∑
j

ϵ4j 2
2j

−1/2

.

This does give n ≥ Ω̃
(
d ·F (σ,1/d)

ϵ2

)
, but takes some work:

• Pick {ϵj}.
• Corner cases: all buckets have dj = 1 or ∥ρ∥∞ ≥ 1

2 .

Details in the paper (Section 5)
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Tools from Prior Work

[CLO22] showed that if ∥ρ− σ∥1 ≥ ϵ, then there are a few
“simpler” ways in which these states can be far.

⇒ They test for each such case with an
unentangled-measurement Hilbert-Schmidt certifier.

⇒ We replace this with an entangled-measurement certifier.

Theorem (Hilbert-Schmidt Tester from [BOW19])

There exists an algorithm HSCertify that can distinguish between
ρ = σ and ∥ρ− σ∥2 ≥ ϵ using O(1/ϵ2) copies of ρ.
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Upper Bound
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Upper Bound: Case 1

Case 1: The unknown state has
too much weight on the tail.

Can be tested for with O(1/ϵ2)
(unentangled!) measurements
(from [CLO22]).
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Upper Bound: Case 2

Case 2: For some bucket j ,
∥ρj − σj∥1 is too large.

After simple pre-processing,
projecting and then passing to
HSCertify, this can be handled

with Õ
(
d ·F (σ,1/d)

ϵ2

)
copies of ρ.
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Upper Bound: Case 3

Case 3: For some buckets j , j ′,
the non-principal submatrices are
too far.

Assuming Case 2 does not hold,
this can again be handled with

Õ
(
d ·F (σ,1/d)

ϵ2

)
copies of ρ.

Total complexity: Case 1 + Case 2 + Case 3 = Õ
(
d ·F (σ,1/d)

ϵ2

)
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(
d ·F (σ,1/d)

ϵ2

)

Chirag Wadhwa Instance-Optimal State Certification 31 / 32



Discussion

We have shown nearly instance-optimal bounds for state
certification with entangled measurements:

Ω̃

(
d · F (σ,1/d)

ϵ2

)
≤ n ≤ Õ

(
d · F (σ,1/d)

ϵ2

)
.

Open Questions:

• The amounts of mass removed to get σ, σ do not match; can
this be overcome?

• What about state certification with t-copy measurements,
with 1 < t ≪ d/ϵ2? [CCHL21] have some partial results, but
even worst-case bounds remain open.

Thank you!
arxiv:2507.06010

chirag.wadhwa@ed.ac.uk
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[CCHL21]: A hierarchy for replica quantum advantage; Chen-Cotler-Huang-Li
2021.
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