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Property testing

Definition 1 (Property)

Let X be a set of objects and d : X × X → [0, 1] be a distance measure on X . A subset
P ⊆ X is called a property. An object x ∈ X is ϵ-far from P if d(x , y) ≥ ϵ for all y ∈ P;
x is ϵ-close to P if there is a y ∈ P such that d(x , y) ≤ ϵ.

Definition 2 (Property tester)

ϵ-property tester for P is an algorithm that receives as input either an x ∈ P or an x
that is ϵ-far from P. In the former case, the algorithm accepts with probability at least 2

3 ;
in the latter case, the algorithm rejects with probability at least 2

3 .
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Property estimation

Definition 3 (Property estimator)

ϵ-property estimator for P is an algorithm that receives x , y ∈ P as input and outputs
d ′(x , y) with probability at least 2

3 . Which d ′(x , y) satisfies

|d(x , y)− d ′(x , y)| ≤ ϵ. (1)

The examples of classical distance measures

• Fidelity F (x , y) =
∑

i

√
xiyi .

• Trace distance T (x , y) = 1
2

∑
i |xi − yi |.

• Shannon entropy H(x) = −
∑

i xi log xi .

• Rényi entropy Hα(x) = − 1
1−α log

∑
i x

α
i .
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Quantum property testing

If X are represented as quantum density matrices, the quantum analog of P is called as
quantum property and d as quantum distance measure.
The examples of quantum distance measures (which we will look at later)

• Fidelity F (ρ, σ) = Tr

√
ρ

1
2σρ

1
2 .

• Trace distance T (ρ, σ) = 1
2Tr|ρ− σ|.

• von Neumann entropy S(ρ) = −Tr(ρ log ρ).
• Quantum rényi entropy Sα(ρ) =

1
1−α logTr(ρα).

But, we will look at it later.
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Peculiar property testing

• Learn the multiset {p1, p2, · · · , pd}.
• Determine if {p1, p2, · · · , pd} satisfies a certain property. (eg. { 1d ,

1
d , · · · ,

1
d })

• Learn the k largest pi ’s.
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Peculiar property testing: Quantum version

• Learn the multiset {p1, p2, · · · , pd}.
• Determine if {p1, p2, · · · , pd} satisfies a certain property. (eg. { 1d ,

1
d , · · · ,

1
d })

• Learn the k largest pi ’s and the associated |ψi ⟩.
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Classical distribution: Young diagram (Histogram)

Say we care about a property of {p1, p2, · · · , pd}.
Typical sample when n = 20, d = 5 (eg. 54423131423144554251)
Represented as Histogram.
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Classically learning properties of {p1, p2, · · · , pd}

The problem has two commuting symmetries:
Sn-invariance (permuting the n outcomes)
Sd -invariance (permuting d outcome names)

“Factoring these out”, WLOG learner just gets a random Young diagram λ (with n boxes,
d rows)

Pr(λ) =

(
n

λ

)
mλ(p1, p2, · · · , pd) (2)

some certain symmetric polynomial mλ.
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Quantumly learning properties of {p1, p2, · · · , pd}

The problem has two commuting symmetries:
Sn-invariance (permuting the n outcomes)
U(d)-invariance (rotating unknown {|ψ1⟩ , |ψ2⟩ , · · · , |ψd⟩})

“Factoring these out”, involves Schur-Weyl duality from the representation theory of Sn
and U(d).

Pr(λ) = f λsλ(p1, p2, · · · , pd) (3)

some certain symmetric polynomial sλ.
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Schur-Weyl duality

Theorem 4 (Schur-Weyl duality)

The k-th order commutant of the unitary group is the span of the permutation operators
associated to Sk :

Comm(U(d), k) = span
(
Vd(π) : π ∈ Sk

)
. (4)

So Sn-invariance and U(d)-invariance can coexist.
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Quantum distribution: Young diagram (RSK algorithm)

Say we care about a property of {p1, p2, · · · , pd}.
Typical sample when n = 20, d = 5 (eg. 54423131423144554251)
Represented as Young diagram, using RSK algorithm.

• λ1: longest increasing subsequence

• λ1 + λ2: longest union of 2 increasing subsequence
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Questions?
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Different input models

Distributional property testing in a quantum world [GT19]

• Classical sampling

• Quantum state sampling

• Quantum state with purification

• Classical with quantum query access
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Classical and Quantum state sampling

Definition 5

A classical distribution (pi )
n
i=1 is accessible via classical sampling if we can request

samples from the distribution, i.e., get a random i ∈ [n] with probability pi .

Definition 6

A quantum distribution ρ ∈ Cn×n accessible via quantum sampling if we can request
copies of the state ρ, which is represented as:

ρ =
n∑

i=1

pi |ψi ⟩ ⟨ψ| . (5)
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Quantum state with purification

Definition 7

A density operator ρ has purified quantum query access if we have access to a unitary
oracle Uρ (and its inverse) acting as

Uρ |0⟩A |0⟩B = |ψρ⟩AB =
n∑

i=1

√
pi |ϕi ⟩A |ψi ⟩B (6)

such that TrA(|ψρ⟩ ⟨ψρ|) = ρ.
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Classical with quantum query access

Definition 8

A density operator ρ has purified quantum query access if we have access to a unitary
oracle Uρ (and its inverse) acting as

Uρ |0⟩A |0⟩B = |ψρ⟩AB =
n∑

i=1

√
pi |ϕi ⟩A |i⟩B (7)

such that TrA(|ψρ⟩ ⟨ψρ|) = ρ.
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Different input models: Recap

How do we test or estimate quantum properties with any of those input models?

• Quantum state sampling: ρ =
∑n

i=1 pi |ψi ⟩ ⟨ψ|
• Quantum state with purification: Uρ |0⟩A |0⟩B =

∑n
i=1

√
pi |ϕi ⟩A |ψi ⟩B

• Classical with quantum query access: Uρ |0⟩A |0⟩B =
∑n

i=1

√
pi |ϕi ⟩A |i⟩B

For example Tr(ρ2)?→ swap test.
Then, how about Tr(

√
ρ)?, S(ρ) = −Tr(ρ log ρ), F (ρ, σ) = Tr(

√√
ρσ
√
ρ) etc.
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Polynomial approximation: Not enough

Since we can calculate Tr(ρk) for arbitrary k , let’s use polynomial approximation.

Tr(
√
ρ) =

K∑
i=1

aiTr(ρ
i ) (8)

With the best K -degree polynomial, error is O( 1
K ). To reduce the error to ϵ, we set

K = O(1ϵ ). Then, the required complexity is proportional to

1∑K
i=1 |ai |

, (9)

which often explodes to exponential rate (not only for Tr(
√
ρ), almost every property

functions).
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Quantum singular value transformation(QSVT)

Definition 9

If we can prepare a purification of a quantum distribution / density operator ρ, then we
can construct a unitary U, which has this density operator in the top-left corner, using
only two queries to Uρ. This observation is originally due to Low and Chuang (2016). We
call such a unitary a block-encoding of ρ:

U =

[
ρ ·
· ·

]
←→ ρ = (⟨0|⊗a ⊗ I )U(|0⟩⊗a ⊗ I ) (10)

We encode the information of ρ in a unitary. Therefore we can use unitary operations to
obtain additional information of ρ.
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QSVT with polynomial approximation

Definition 10 (Singular value transformation)

Let f : R→ C be an even or odd function. Let A ∈ C d̃×d have the following singular
value decomposition

A =

dmin∑
i=1

ςi |ψ̃i ⟩ ⟨ψi | ,

where dmin := min(d , d̃). For the function f we define the singular value transformation
on A as

f (SV )(A) :=

{ ∑dmin
i=1 f (ςi ) |ψ̃i ⟩ ⟨ψi | if f is odd, and∑d
i=1 f (ςi ) |ψi ⟩ ⟨ψi | if f is even, where for i ∈ [d ] \ [dmin], ςi := 0.
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QSVT with polynomial approximation

Theorem 11

Let HU be a finite-dimensional Hilbert space and let U,Π, Π̃ ∈ HU be linear operators on
HU such that U is a unitary, and Π, Π̃ are orthogonal projectors. Suppose that
P =

∑n
k=0 akx

k ∈ R[x ] is a degree-n polynomial such that

• ak ̸= 0 only if k ≡ n mod 2, and

• for all x ∈ [−1, 1] : |P(x)| ≤ 1.

Then there exist Φ ∈ Rn, such that

P(SV )
(
Π̃UΠ

)
=


(
⟨+| ⊗ Π̃

)(
|0⟩ ⟨0|⊗UΦ + |1⟩ ⟨1|⊗U−Φ

)(
|+⟩ ⊗ Π

)
if n is odd, and(

⟨+| ⊗ Π
)(
|0⟩ ⟨0|⊗UΦ + |1⟩ ⟨1|⊗U−Φ

)(
|+⟩ ⊗ Π

)
if n is even,

(11)

where UΦ = e iϕ1(2Π̃−I )
∏(n−1)/2

j=1

(
e iϕ2j (2Π−I )U†e iϕ2j+1(2Π̃−I )U

)
. a

aThis is the mathematical form for odd n; even n is defined similarly. 21 / 45

Mobile User



QSVT

Thus for an even or odd polynomial P of degree n, we can apply singular value
transformation of the matrix Π̃UΠ with n uses of U, U† and the same number of
controlled reflections I−2Π, I−2Π̃.
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QSVT explanation
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Applying QSVT to property estimation

Suppose that we want to estimate Tr(f (ρ)).

• Find a polynomial g that xg(x) approximates f (x) for x ∈ [0, 1].

• Block encode ρ in U using 1 queries to Uρ and U†
ρ. (If Uρ is not given, rank(ρ)

ϵ2

samples of ρ can construct the channel approximation of U within ϵ-additive error)

• Using QSVT, we can encode the d-degree polynomial g(ρ) in a unitary (denoted as

Ug ), using d queries to Uρ and U†
ρ. (∀x ∈ [0, 1], |g(x)| ≤ 1)

• Calculate Tr((|0⟩ ⟨0| ⊗ ρ)Ug ) = Tr(ρg(ρ)) by using Hadamard test and Amplitude
estimation (we will look at it later).
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Hadamard test

Figure: Hadamard test

Estimates Re(⟨ψ|U |ψ⟩), Im(⟨ψ|U |ψ⟩) within additive error ϵ using O( 1
ϵ2
) queries to

U,U†. Using amplitude estimation techniques we can reduce this to O(1ϵ ).

With little refinement, hadamard test allows us to estimate
Tr((|0⟩ ⟨0| ⊗ ρ)Ug ) = Tr(ρg(ρ)).
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Amplitude estimation

Classically, given i.i.d. samples of a Bernoulli random variable X with [X ] = p, it takes
Θ(1/ϵ2) samples to estimate p within ϵ with high success probability. Quantumly, if we
are given a unitary U such that

U |0⟩ |0⟩ = √p |0⟩ |ϕ⟩+ |0⊥⟩ , where ∥|ϕ⟩∥ = 1 and (⟨0| ⊗ I ) |0⊥⟩ = 0, (12)

then if measure the output state, we get 0 in the first register with probability p.
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Amplitude estimation

Given access to U we can estimate the value of p quadratically more efficiently than what
is possible by sampling:

Theorem 12

Given U satisfying, the amplitude estimation algorithm outputs p̃ such that p̃ ∈ [0, 1] and

|p̃ − p| ≤
2π

√
p(1− p)

M
+
π2

M2
(13)

with success probability at least 8/π2, using M calls to U and U†.
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Amplitude estimation

In particular, if we take M =
⌈
2π

(
2
√
p

ϵ + 1√
ϵ

)⌉
= Θ

(√
p
ϵ + 1√

ϵ

)
, we have

|p̃ − p| ≤
2π

√
p(1− p)

2π
ϵ+

π2

4π2
ϵ2 ≤ ϵ

2
+
ϵ

4
≤ ϵ.

Therefore, using only Θ(1/ϵ) implementations of U and U†, we could get an ϵ-additive
approximation of p with success probability at least 8/π2, which is a quadratic speed-up
compared to the classical sample complexity Θ(1/ϵ2).
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von Neumann entropy estimation (with pad)
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Known complexity across different input models

Figure: Upper bound across different input models
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What makes the discrepancy between different input models?

Suppose the quantum state sampling input model, where only copies of the state ρ is
given. To perform QSVT, we need to construct a quantum channel E that approximates
the unitary block encoding of ρ. E is given by a quantum circuit W with k samples of ρ.

Figure: Quantum circuit for approximately implementing the inverse of unitary operators.

Often, the complexity of k tend to follow the polynomial of r and 1
ϵ .
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What makes the discrepancy between different input models?

Suppose the classical with quantum query access model Up

Uρ |0⟩A |0⟩B = |ψρ⟩AB =
n∑

i=1

√
pi |ϕi ⟩A |i⟩B (14)

Take for example U := (Up ⊗ I ), Π := (
∑n

i=1 I ⊗ |i⟩ ⟨i | ⊗ |i⟩ ⟨i |), and
Π̃ := (|0⟩ ⟨0| ⊗ |0⟩ ⟨0| ⊗ I ). These operators form a projected unitary encoding of

A = ΠUΠ̃ =
n∑

i=1

√
pi |ϕi ⟩ ⟨0| ⊗ |i⟩ ⟨0| ⊗ |i⟩ ⟨i | . (15)

We can perform QSVT with square-root efficiency.
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Recent work!

I proved an improved upper bound for classical entropy estimation with quantum query
access:

O(
√
r

ϵ1.5
)→ O(

√
r

ϵ
+

r√
ϵ
), (16)

which is better when ϵ ≤ 1√
r
. (Actually, we can loosen it to ϵ ≤ 1

r
1
3
.)

This work improves Rényi entropy too!
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Distance measures estimation

A more difficult subject... estimate F (ρ, σ),T (ρ, σ).

Block encode Uf ,Ug with Uρ,Uσ (and each inverses) and use QSVT to block encode
f (ρ)g(σ) into a unitary.

34 / 45

Mobile User



Trace distance estimation (with pad)
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Distance measures estimation complexity

Figure: Here, N is the dimension of quantum states, r is the rank of quantum states. 36 / 45
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Any lower bounds?

Task: Discriminate two distributions {pi} and {qi}. Define dH(p, q) as

dH(p, q) =

√∑
i

(
√
pi −

√
qi )2/2 (17)

We will look at the lower bounds on purification and sample model.
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Lower bound on purification model

Theorem 13

Assume the quantum state with purification input model.

Uρ |0⟩ |0⟩ =
∑
i

√
pi |ϕi ⟩ |ψi ⟩ , (18)

Uσ |0⟩ |0⟩ =
∑
i

√
qi |ϕ′i ⟩ |ψ′

i ⟩ . (19)

Then discriminating the two distributions have the lower bound

Ω(
1

dH(p, q)
) (20)
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Lower bound on sample model

Theorem 14

Assume the quantum state with purification input model.

ρ =
∑
i

pi |ψi ⟩ ⟨ψi | , (21)

σ =
∑
i

qi |ϕi ⟩ ⟨ϕi | . (22)

Then discriminating the two distributions have the lower bound

Ω(
1

dH(p, q)2
) (23)
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Limitations on the current lower bound techniques

With the above theorem, for almost every property we can only deduce the lower bound
Ω(1ϵ ) (purification), Ω(

1
ϵ2
) (sample). Which are far from tight.

There are other techniques for sample lower bounds (explanation in future lectures?). But,
query (purification) lower bounds are very rare. This could be a future research subject.
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Property testing (easier? or harder? than estimation)

• Calculating d(ρ, σ) with ϵ
2 -precision allows us to determine whether it is d(ρ, σ) > ϵ

or d(ρ, σ) = 0.

• So,in terms of complexity, property testing is easier than estimation.

• But, since we expect lower complexity algorithm for property testing, finding suitable
algorithms for property testing is harder.
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Other usage of QSVT, QAE, etc

• QSVT: Quantum channel verification, Quantum principal component
analysis(actually this is property testing too), Hamiltonian simulation, Gibbs state
sampling, etc.

• QAE: Almost every quantum square speed-up advantage.
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Recent works: Grover’s algorithm is an approximation of imaginary-time
evolution

P. Shor argued “quantum computers operate in a manner so different from classical
computers that our techniques for designing algorithms and our intuitions for
understanding the process of computation no longer work”. Here, however, we show that
Grover’s algorithm can be viewed through the well-established lenses of Riemannian
optimization and ITE. That is, Grover’s algorithm is simply performing Riemannian
optimization, a standard classical optimization strategy, but on the manifold of unitaries.

An interesting point to highlight is that, while the optimal query complexity for
unstructured search is limited to a quadratic speed-up, ITE in general converges
exponentially to the target state.
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Recent works: Amplitude amplification and estimation require inverses

Prove that the generic quantum speedups for brute-force search and counting only hold
when the process we apply them to can be efficiently inverted.
In other words, U† is necessary for quantum advantage.
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Thanks a lot!
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