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Property testing

Definition 1 (Property)

Let X' be a set of objects and d : X x X — [0, 1] be a distance measure on X. A subset
P C X is called a property. An object x € X is e-far from P if d(x,y) > € for all y € P;
x is e-close to P if there is a y € P such that d(x,y) <e.

Definition 2 (Property tester)

e-property tester for P is an algorithm that receives as input either an x € P or an x
that is e-far from P. In the former case, the algorithm accepts with probability at least %;
in the latter case, the algorithm rejects with probability at least %

2/45



Property estimation

Definition 3 (Property estimator)

e-property estimator for P is an algorithm that receives x,y € P as input and outputs
d’(x, y) with probability at least 3. Which d’(x, y) satisfies

|d(x,y) —d'(x,y)l < e (1)

The examples of classical distance measures

Fidelity F(x,y) = >, V/XiVi- d LX.Y) = H(") - H(sl)
Trace distance T(x,y) = 3 >, [x — yil-

Shannon entropy H(x) = — >, x; log x;.
® Rényi entropy Hy(x) = —ﬁ log > ; x{*.
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Quantum property testing

If X are represented as quantum density matrices, the quantum analog of P is called as
quantum property and d as quantum distance measure.
The examples of quantum distance measures (which we will look at later)

e Fidelity F(p,0) = Tr\/p%ap%

® Trace distance T(p,0) = 5Tr|p — 0.
—Tr(plog p)-

p) = 125 log Tr(p®).

® von Neumann entropy S(p

/\
/'\v’\’“—‘

® Quantum rényi entropy S,

But, we will look at it later.
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Peculiar property testing

p= E Pz (42523 )
P2, s pd b [P‘CP’un.‘P“?\’

atisfie a certain property. (eg. {%, %7... ,%})

® Learn the multiset
® Determine if {p1, p2, "
® |earn the k largest p;'s.
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Peculiar property testing: Quantum version

® |earn the multiset {p1,p2,- -, pqg}-
® Determine if {p1, p2, -, pqg} satisfies a certain property. (eg. {%, %, e ,%})
® Learn the k largest p;'s and the associated [v;).
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Classical distribution: Young diagram (Histogram)

% ““‘\‘“"‘U

Say we care about a property of {pi e Duk v A
Typical sample when(n }= 20, d.=.5.(eg. 54423131423144554251)
Represented as Histogram.

Npwh -~

h=

é/20
4—/70
&(20
/20
3 /20

(%
P

b

7/45


Mobile User


Classically learning properties of {p1, p2,- -, pq}

The problem has two commuting symmetries:
Sp-invariance (permuting the n outcomes)
Sg-invariance (permuting d outcome names)

“Factoring these out”, WLOG learner just gets a random Young diagram X (with n boxes,
d rows)

Pr(A) = mx(p1, P2, Pd) (2)

some certain symmetric polynomial my.

8/45


Mobile User


Quantumly learning properties of {p1, po, -+ , pd}

Pn Pe - P& p\h o Pé
I 2 d In)iea)-- W)

The problem has two commuting symmetries: .
nvariance (permuting the n outcomes) 1) 12 14
d)Yinvariance (rotating unknown {|11),[¥2), -+, |¥4)}) g

| 9 A

“Factoring these out”, involves Schur-Weyl duality from the representation theory of S,

and U(d).
e ‘__’U 'U‘p'U’"'
PI’@Z f)\s)\(plv P2, 7pd) (3

some certain symmetric polynomial s.

)
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Schur-Weyl duality

Theorem 4 (Schur-Weyl duality)

The k-th order commutant of the unltary group is the span of the permutation operators

associated to Sy: tv ; Aj -0

Comm(U(d) k) = span : e 5k>- (4)

So Sp-invariance and U(d)-invariance can coexist.
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Quantum distribution: Young diagram (RSK algorithm)

Say we care about a property of {p1,p2, -, pd}- 'l'l’ - M
Typical sample when n =20,d =5 (eg. )
Represented as Young diagram, using RSK algorithm. Taht bound o
® )\i: longest increasing subsequence (Lj‘s) 8 |
® )1 + Ao: longest union of 2 increasing subsequence M °¥ BK(W)

ML L444SS EYO, - Rskew)
‘r'::u.nag PQ" ?

: 33 4 \@'@l‘e‘*’“

P nso(4)
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Different input models

Distributional property testing in a quantum world [GT19]
® (Classical sampling
® Quantum state sampling
® Quantum state with purification

® (Classical with quantum query access
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Classical and Quantum state sampling

Definition 5
A classical distribution (p;)_; is accessible via classical sampling if we can request
samples from the distribution, i.e., get a random i € [n] with probability p;.

Definition 6

A quantum distribution p € C"" accessible via quantum sampling if we can request
copies of the state p, which is represented as:

p= Z pi i) (%Y - (5)
=
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Quantum state with purification

Definition 7
A density operator p has purified quantum query access if we have access to a unitary

oracle U, (and its inverse) acting as
Ve n V
Q41906 = 160045 = 2 vl6ialli (6
i=1

such tha(To) ) ) =0 AT
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Classical with quantum query access

Definition 8
A density operator p has purified quantum query access if we have access to a unitary

oracle U, (and its inverse) acting as

i 4
Up[0)410)g = [¥p) ap = Z VPiloidali)g (7)
i=1

such that Tra(|e,) (¥,]) = p.
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Different input models: Recap

How do we test or estimate quantum properties with any of those input mode|s7

® Quantum state sampling: p = 211:1 pi [¥i) (b 0( )
® Quantum state with purification: U,[0),[0)g = D71 \/Pi [6i) 4 %i) g

® Classical with quantum query access: U, [0)4[0)g = > i1 V/Pil9i)ali) g ﬂ“"‘ht
For example 6 (p ;y — swap test. éo
Then, how about Tr(/p)?, S(p) = —Tr(plogp), F(p,o) = Tr(\/\/po\/p) etc.

Joe= f‘m\ V<)
fr=08m0 Y L)
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Polynomial approximation: Not enough

Since we can calculate Tr(p¥) for arbitrary k, let's use polynomial approximation.

3
Za, ) ¢ —-vz ‘ﬂz‘i' (8)

With t est K-degree polynomial, error is 0(7). To reduce the error to €, we set
K =[0( Then, the required complexity is proportional to

which often explodes to exponential rate (not only for Tr(/p), almost every property
functions).
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Quantum singular value transformation(QSVT)

Definition 9

If we can prepare a purification of a quantum distribution / density operator@then we
can construct a unitary U, which has this density operator in the top-left corner, using
only two queries to U,. This observation is originally due to Low and Chuang (2016). We

call such a wnitary a block-encoding of o v= ‘0’@‘ﬂe* - C

— 1?3 o= w0 s oo s (10)
\_//
We encode the information of p in a unitary. Therefore we can use unitary operations to
obtain additional information of p.
2 e @b ¢
v v 2
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QSVT with polynomial approximation

Definition 10 (Singular value transformation)

Let f : R — C be an even or odd function. Let A € C9%9 have the following singular
VT ] o= T ifrocta|

, = 2 3
@%” Fipr= LFrpaatned)

where dpin := min(d, J) For the function f We define the singular value transformation

on A as i % ‘ < ) "Jfbffe

Ao | SEAQIG) (] if Fis 0dd 0(d)
' Z,: (i) |vi) (Wil if f is even, where for i € [d] \ [dmin],s; := 0.

f=f3\ X 19

value decomposition

dmin
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QSVT with polynomial approximation

Let Hy be a finite-dimensional Hilbert space and let U, 1, ne Hy be linear operators on
Hy such that U is a unitary, and T1,T1 are orthogonal projectors. Suppose that
P =Y"7_,akx* € R[x] is a degree-n polynomial such that

® 2, £ 0 onlyif k=n mod 2, and [ﬁp) ]

e forall x € [-1,1]: |P(x)| < 1.
Then there exist ® € R", such that ‘¥ —

(¢+1 @) (10) 0l Us + 1) (1@U0) (1+) ®N) ifn is odd, and
<<+‘ X I'I) (|0> (0|®@Us + |1) <1|®U_¢> (|+> ® |_|> if n is even,

E(’ ] (11)
where@— e@zn ) H(n 1)/2 e@zn—/@i 27+ (2ﬁ—/@_ a= s °

?This is the mathematical form for odd n; even n is defined similarly.

PV (fun) =
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QSVT

Thus for an even or odd polynomial P of w@/we can apply singular value
transformation of the matrix MUT with n uses of U, U' and the same number of

controlled reflections [ —2T1, [—21.
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QSVT explanation

®e') v 1] sawt v=(¥ ]
\ N

(\o'ﬂﬂ\'g
o Hodowmard test
(o) UT
Vo 0 (et )

J
(20" (cmoT O swhp) (= 61};) ~( ]
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Applying QSVT to property estimation

Suppose that we want to estimate Tr(f(p)).

® Find a polynomlal@that xg(x) approximates f(x 2 for x € [0,1].

® Block encode p |n®usmg 1 queries to U, and U (If U, is not given, rang%
samples of p can construct the channel approximation of U within e-additive error)

sing QSVT, we can encode the d-degree polynomlal in a l%tfry denoted as
Ug) using d queries,tp U, and UJr (Vx € [0,1], ]g(x)\ <1)

e Calculate Tr((]0) (0| ® p Uﬁl Tr(pg(p)) by using I-_I_aggma;d_tesj: and,Amgl_l_t}de
pstinvatian_(we will look at it later). ‘v Te( )
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0) A H—¢—1H[— 1
7 U)

Figure: Hadamard test

Re
+(pvV) <1,,

Estimates Re({ab| U 1)), Im({2p| Ulak)) within additive error e using@ queries to
U, Ut. Using amplitude_estimation techmques we can reduce this to (’)( ).
Grover

With little refinement, hadamard test aIIows us to estimate
Te((0) (O)® p) Ug) = Tr(pg(p))-
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Amplitude estimation

E

Classically, given i.i.d. samples of a Bernoulli random variable X withv[X] = p, it takes
O(1/¢€?) samples to estimate p within ¢ with high success probability. Quantumly, if we
are given a unitary U such that

@0> 10) (/B [p) [¢) +10%), where [[|¢)]| =1 and ((0]®1)[0") =0,  (12)

then if measure the output state, we get 0 in the first register with probability p.

o(%)
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Amplitude estimation

Given access to U we can estimate the value of p quadratically more efficiently than what
is possible by sampling:

Given U satisfying, the amplitude estimation algorithm outputs p such that p € [0, 1] and

popl < ZVUR T e o) @)

M
<z

with success probability at least 8/72, using M calls t nd(UT 0

— Vp ,-v,‘r
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Amplitude estimation

€ % € €
2 1-— 2
popl< TVPA=P) T2 €€
21 472 2 4

Therefore, using only ©(1/¢) implementations of U and U, we could get an e-additive
approximation of p with success probability at least 8/7r2, which is a quadratic speed-up
compared to the classical sample complexity ©(1/€?).
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von Neumann entropy estimation (with pad)

S(e) = —tr (plog p) Pezy = - xloy A
« 1
xAYx) — Y@ =- lopA=loy

‘i=°§‘(.k 0 tg]
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Known complexity across different input models

problem
model

#L-closeness testing

i v g2
(robust) £--closeness testing

Shannon / von Neumann entropy

Classical with

Classical sampling

373 12
(-J(mnx {”M, n })
EVEER

Chan et al. (2014)

(_)(;l'_s) Chan et al. (2014)

ln\f n

(J(P U\f“ +
Wu mul \-,11‘.\4 (2016)

Jiao et al. (2015),

Quantum state

ool

6(@) é(%) 6(@) (/%) Bun et al. (2018) L
(Jllel]ltll]ll query-access € s
Quantum state
: o(%)
with purification

sampling

(J(:%) Bidescu et al. (2017)

(1(5) Bidescu ol al. (

C)(g).i’(”_) Acharya et al. (2017h)

Figure: Upper bound across different input models

30/45


Mobile User


What makes the discrepancy between different input models?

Suppose the quantum state sampling input model, where only copies of the state p is
given. To perform QSVT, we need to construct a quantum channel £ that approximates

the uaitary block encading-efes: £ is given by a quantum circuit W with k samples of p.
R AR | ]

pEE = D -?]
[0 = Wt —D ?
0+ f—Em(g)

VUe-> o(\)

— o(phtret))

Figure: Quantum circuit for approximately implementing the inverse of unlta operator

(a) £(0) = Uyol] (b} £ (p) =~ Ul

Often, the complexity of k tend to follow the polynomial of r and %
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What makes the discrepancy between different input models?

Suppose the classical with quantum query access model U, M-'z)n

Uy 10)a10)5 = lt) 45 Zm¢ é% [@”Ej‘ (14)

Take for example U := (Up,® 1), M:= (31, I ® |i) (i| @ ]i) (i]), and
M:= (]0) (0| ® |0) (0| ® I). These operators form a projected unitary encodin,s o\fﬁﬂ

A=NUR =3 (5 ) Ol 1 Ol 1) E AR

i=1

We can perform QSVT with square-root efficiency. 3) —
Py
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| proved an improved upper bound for classical entropy estimation with quantum query
access:

et ofF
0(£)a@(ﬁ+\;€), e=r

€

which is better when € < \% (Actually, we can loosen it to € < %)
r3

This work improves Rényi entropy too!
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Distance measures estimation

A more difficult subject... estimate F(p, o), T(p,0).

Block encode Uy, U, with U,, U, (and each inverses) and use QSVT to block encode
f(p)g(o) into a unitary. (e A 0a

e (@ ] - [P«n]

s> (¢ 1> [™]
(e ]
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Trace distance estimation (with pad)

Tles)= STrie-of A=p-s = LU\ v¢ |
o= 3141 = 3 Tz

Tv
T (Al = Tre (A S\‘ﬁn“\) = Trlp) aum) = Tr( vin)
?
a=es - (210U ]
Ec;’E:g J’\’ (_a(m ]
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Distance measures estimation complexity

Task Resources CQuery/Sample Complexity — Approach
Tomography Purified Access fjli_\' rie) [37]
Identical Copies O(Nr/e?) 135, 36)

Trace Distance  Purified Access O 2 /%) [42]

r-0O(1/22) Algorithm 1

Identical Copies O(r2 /=) Algorithm 2
Fidelity Purified Access (3[1_12.3;51:1.3:' [41]
O(r83 /75) [42]
0185y 143]
Identical Copies fj[r':'aJ-'“flj} [43]

Figure: Here, N is the dimension of quantum states, r is the rank of quantum states. 3645
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Any lower bounds?

Task: Discriminate two distributions and {q;}). Define dy(p, q) as

dh(p. q) = \/ZW— V@22 (17)

We will look at the lower bounds on purification and sample model.
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Lower bound on purification model

Assume the quantum state with purification input model.

U, 10) |0) = Z\f\cb i), (18)

Uy |0) |0) = wa 7). (19)

Then discriminating the two distributions have the lower bound

1

7
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Lower bound on sample model

Theorem 14

o= Z qi |i) (il - (22)

Then discriminating the two distributions have the lower bound

1

e, a2 (23)
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Limitations on the current lower bound techniques

With the above theorem, for almost every property we can only deduce the lower bound
Q(1) (purification), Q(g%) (sample). Which are far from tight.

There are other techniques for@@lower bounds (explanation in future lectures?). But,
query (purification) lower bounds are very rare. This could be a future research subject.
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Property testing (easier? or harder? than estimation)

® Calculating d(p, o) with 5-precision allows us to determine whether it is d(p, o) > ¢
or d(p,0) =0.
® So,in terms of complexity, property testing is easier than estimation.

® But, since we expect lower complexity algorithm for property testing, finding suitable
algorithms for property testing is harder.
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Other usage of QSVT, QAE, etc

® QSVT: Quantum channel verification, Quantum principal component
analysis(actually this is property testing too), Hamiltonian simulation, Gibbs state
sampling, etc.

® QAE: Almost every quantum square speed-up advantage.
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Recent works: Grover's algorithm is an approximation of imaginary-time

evolution

P. Shor argued “quantum computers operate in a manner so different from classical
computers that our techniques for designing algorithms and our intuitions for
understanding the process of computation no longer work”. Here, however, we show that
QLQV_GL',S\ algorithm can be viewed through the well-established lenses of Riemannian
@Limi_za‘;jan.and@ That is, Grover's algorithm is simply performing Riemannian
optimization, a standard classical optimization strategy, but on the manifold of unitaries.

An interesting point to highlight is that, while the optimal query complexity for
unstructured search is limited to a quadratic speed-up, ITE in general converges
exponentially to the target state.
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Recent works: Amplitude amplification and estimation require inverses

Prove that the generic quantum speedups for brute-force search and counting only hold
when the process we apply them to can be efficiently inverted.
In other words, U' is necessary for quantum advantage.
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Thanks a lot!



