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Introduction

Lecture 4 explores diverse examples and applications where the Haar measure plays a
fundamental role in quantum information. We derive well-known formulas that reduce to
computing moments over the Haar measure, including the twirling of quantum
channels and the average gate fidelity. These formulas lay the foundation for various
applications, such as Randomized Benchmarking.
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Introduction

Furthermore, we provide detailed insights into two notable examples showcasing the
applications of the theory of unitary design. We examine Barren Plateaus in Variational
Quantum Algorithms, shedding light on the optimization landscapes encountered in such
algorithms. Additionally, we delve into Classical Shadow tomography, where the theory
of unitary design aids in designing efficient measurement strategies for reconstructing
properties of unknown quantum states.
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Recap: Haar measure

Definition 1 (Haar measure)

The Haar measure on the unitary group U(d) is the unique probability measure iy that is
both @ and right invariant over the group U(d), i.e., for all integrable functions f and
for all V € U(d), we have:

v v
/ £ (U) dun(U) = / £ (UMW) dpupa(U) = / FOVU)dun(U). (1)
U(d) U(d)

U(d)

The Haar measure is a probability measure, satisfying:
° fs 1dun(U) =0
° Lﬂd)ldMH(U)::l
e E [f = f d
JE, [FU) = g f (V) dun(V)
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Recap: Computing moments

Theorem 2 (Computing moments)

Let O L (((Cd)®k). The moment operator can then be expressed as a linear
combination of permutation operators:

uf]iH UPkOUT™® ()= > " cx(0) Vu(m), (2)
TESK —

where the coefficients c;(O) can be determined by solving the following linear system of
k! equations:

Tr(vj(a)o) -y cAO)Tr(VJ(a)Vd(Tr)) for all o € S. ® )
TESK P
This system always has at least one solution.

.
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Recap: Computing moments examples

Example 3 (First and second moment)
Given O € L (Cd), we have:

h
E |vout| = T'E!O)/.Tr(e wotut) ) ‘—'-‘('X;‘(O)

o M Brlcn)=led

Given O € £((CY)®), we have: 1. q If ¢ T_gf)
®2 T®2 | _
JE, UOU ] —adltagh, Loy O

where: T’ (Y‘ " )

Tr(O) — d 1 Tr(FO Tr(FO) — d~1Tr(O
OOy TEOLGTNE

a,o =
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Recap: Unitary designs

For instance, consider a distribution v where the set of unitaries S is discrete and each
unitary has an equal probability of being chosen. In this case, we have:

V]E@[VWOVT@"} -1 Y vEkoviek, (7)

S1es

Observation 4
A probability distributior@is a unitary k-design if and only if:

IEAV@”‘ ® v*®k] - %[U@’k ® U] . (8)
14 ) U

K=3 — unitany 3-3?531\ - cliMyed gUoap
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Examples of moment calculations

Example 5 (Twirling of a quantum channel is a depolarizing channel)

Let v a unitary 2-design distribution. Consider a quantum channel ): £(C¢) — £(CY)
and a quantum stateoe S (C9). Then:

E, [u'e (vpf) U @w(l—w)ﬂ(p);, (9)

where the left-hand side represents the so-called twirling of ®, ang we define:

d2F. (¢) — 1
Poi="—p 1 (10)
Here, F. (®) denotes the entanglement fidelity given by \
Fe () = £ (2] (I T, NS = = T WHVI2)
ETY
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Proof of Example 4

Considering a Kraus decomposition forOW|th operators {K} T 1, we haveA

2 (P) 2 erkz
JE. [th (UpuT U] > LE. [UTK UpUTKTU} 3= (11)
- ke
= ; ULEH Tr, [(l ®p)E‘®2(K ® K! U%ﬂ M:u@z
= f: Tr, [(/ ® p)U]NEuH <U®2(K,- ® KIT)UT®2> IE} ) (13)
= test

where in the second equality we used that AB = Trp (A® BF), and in the third equality
that UIE [F(U)] = UE [f(UT)] for all integrable functions f.

~IH
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Proof of Example 4

Using the property of the second moment, we have:

d2
E (U2 Y KoK | U®| =al+ o, (14)

where the coefficients ¢ and cr are given by:

d? - d
Shm(kek) - d (T ke KF) s )21

a = d2 1 - d2 1 (15)
d? T - d? T o
Tt(FLL koK) - d Tr(SE KK g g 1% (k)P

where we used the swap-trick and the fact that Zil K,-TK,- =1
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Proof of Example 4

Therefore:

JE. [Uch (UpUT) U] =Tro[(/ © p) (cr1 + o) F] (17)

qu—

=T (2 )F) + 501~ a)Te((©p)  (19)

= ap+(1—a)Tr(p) . (19)

—
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Proof of Example 4

To conclude the proof, we observe that ¢ = pe, as defined in Eq.(10). This follows from
the relationship Zf’il |Tr(K;)|* = d2F. (®), as it can be easily seen:

Fo(9) = 4 (@0 = T(9) @) 2 (20)
d2
=Y L@k ) @K @ 119) (21)
111 P
=5 > Te(K)I (22)
i=1
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Examples of moment calculations

Example 6 (Average gate fidelity)

Let v be a state 2-design distribution. Consider a quantum channel ® : £(C9) — £(C)
and a unitary channel 2/ (-) = U (-) UT. Then, the average gate fidelity is given by:

dFe Ut o ®) +1
(@) oo @) == 23)

Canand

where UT (1) = UT (-) U represents the adjoint channel of I, and

Fe (®) = 2 (Q ® @ Z(|Q) (Q|) |2) corresponds to the entanglement-fidelity.

.
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Examples of moment calculations

Example 7 (Purity)

Consider the complex Hilbert space of two-qudit systems Ha ® Hg of dimensions
respectively da = dim(#Ha) and dg = dim(Hg). Given |[¢)) € Ha ® Hp, let e

pa = Trg (|¥)(1)]). We have: -
i
5 dg + da \'t‘)
E r(loA = T 1 ) (24)
)~z dadg +1

where v is a@distribution. ( . R

7 ) QPO g &

— da Al de
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Proof of Example 7

U~ )
We can express the expected value as followss W)~V ) J -
E Te(h) = E T = E VTr(w}w@(FA ©lg),  (29)

|[)~v [

Since v is a 2-design, we have: chp tricK

2) — ®2 _ ]IA®]IB+FA®]FB] >
IngNyTr(PA) T"<¢EMH [[0)(0]%?] (Fa ® HB)) Tr<[ dndo(dnds 1) (Fa®1p)

- (26)

o

1 ds +d
_ dad? + d2dg) = 27
dadp(dadp +1) (dads Alé) C;B‘:‘:_ _ 1®I¥?d F')
f (d+\)

FYoy
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Concentration inequalities

Markov's inequality states that for a non-negative random variable X and any € > 0, the
probability that X exceeds ¢ is bounded by the ratio of the expected value of X to &:

Prob (X > ¢) §'E[EX] ' (28)
J

In a more general form, if g is a strictly increasing non-negative function, the inequality
can be expressed as: - o

Prob(X >¢) < M (29)

@0
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Levy's lemma

Lemma 8 (Levy's lemma)

Consider the set S?9=1 .= {v € C9 : ||v|» = 1}. Let f : S??~1 — R be a function
satisfying the Lipschitz condition |f(v) — f(w)| < L|lv — w||2. For all ¢ > 0, we have the
-

probability bound: "
2
2de
Idl?';?,t?/-/ [ (o) m’ >e| <2exp < 97T3L2) (30)
double Oponevital
. ,._‘ \-\
MRS A
- - 7’
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Examples of concentration inequalities

IE <t\olt) = 'IE' T'hlﬂ-r ‘o)

Example 9

Let O € Herm (CY) be a Hermitian operator. For all £ > 0, we have: d

v o -
|_P>Ez <‘<M T>@> <_187r3 H0H§0> ' (1)
x_\

In particular, if O is a Pauli string P € {/, X, Y,Z}®”\{l®”}, we have:
Tv(p)= ©

ik
Prob (1] Plul| > ¢) < 2exp (W) . (32)
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Proof of Example 9

To apply Levy's lemma, we consider the function () = (/| O |¢)) and compute its
expected value and Lipschitz constant. First, we observe that

_ . _T(0)
WENOI= B (WI0Ww] =T B [l ==G= ()

Next, we determine the Lipschitz constant. We have

1£(v) — F(30)] = [Tr[(Ju){u] — [v){v]) O]] < [[Olluolllu) (] — V) (V]I (34)

where we used the matrix Holder inequality.

;(v] = &u\ 0|V
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Proof of Example 9

We then observe that:
||IU><UIL—IV><VHI1 <2u—vl,. (35)

Hence, we have |f(v) — f(w)| < 2||O|| ||u — v||,. By applying Levy's lemma with the
Lipschitz constant of f being 2||Of/0, W& can conclude.
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Examples of concentration inequalities

Example 10

Consider a n-qubit state |¢) € C? with d = 2". If we randomly pick a state |¢)) from the
Haar measure, the probability that the overlap between [¢)) and |¢) is larger than ¢ > 0
decays double exponentially with the number of qubits n:

&2, 1Q@)? >4 <20p(-52) (36)
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Barren plateaus

Observation 11

Let v be a distribution defined over the set of unitaries {U(0)}gcpe. If v forms a 2-design
distribution, then the following properties hold:

Eido- gieeeo(fat). g
: --—-DNG ot O 90

-
" T 9=te Ra(6)= € }Q

@)= wo v(e\p ve')
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Proof of Observation 11

We have:

Blcon=T|g (uomse)o| L)o@

where in the last step we used that O is traceless.
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Proof of Observation 11

The second equality follows from B/ar [C(9)] = UE [C(8)*] — E [C(0 )?

U~
JE[C(O)] =Tr [UE <U®2(0)p§)2UT®2(0)> o®2] (39)
= ¢ 2 Tr [10%°] + G 2 Tr [FO®?] (40)
= cp o2 TF [0?], A\ (41)
1 ®2 2)_o—n a
where Cp 92 = T'(Fpo )d il WG ) 12 , and in the last step we used that O is
traceless. The proof is concluded by notifig that ¢, 52 < m and using that
Tr [0?] € O (poly(n)2").
— T —3a- OCpoH()- 27)
b{(n]
= o(=%=
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Probability of finding a large point in cost function

We can then apply Chebyshev's inequality, which states that for all € > 0 we have:

A%

1
I"Jrob (‘C(G) — [C(O)]) > 5) < —2}jfar [C(9)] - (42)
~v ~v - ecU~rv
s
This inequality provides an upper bound on the probability of encountering a foint in the
parameter space where the cost function deviates from its expected value by mpre than ¢.
In particular, the probability of finding a point with a cost function larger tha# ¢ decays

exponentially with the number of qubits: l?jrob(]C(B)| >e)e O <€_2p01y(”)
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Barren plateaus

Similarly, with slightly more involved calculations, we can shqw/that the exponential decay
also applies to the variance of the partial derivative e cost function. This
phenomenon, where the variance of the partial derivatives of the cost function decays
exponentially with the number of qubits n, is commonly referred to as Barren Plateaus.
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Barren plateaus

To analyze the partial derivatives of the cost function, we can express the parameterized
unitary circuit U(@) as the product of two unitary operators: U(8) = UaUg, where

Up = H,L:M_l e~ and Ug = [T, e~ %M Consequently, we can write the partial
derivative of the cost function as follows:

9,C(6) =Tr [(a#U(e)) o Uf(e)o} +Tr [U(e)po (auuf(e)) o] (43)
= —iTr [UaH, Uspo UL UL O] + i Tr [ UaUspo UL H, UL O] (44)
= i Tr |UgpoUl | Hiu, USOUA| | (45)

where we denoted by 0, the partial derivative with respect to 6,,, we used that
0,U(0) = —iUaH, Ug and the cyclicity of the trace. Using this expression for the partial
derivative of the cost function, we can prove the following:
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Barren plateaus

Observation 12

Let v4, vp be probability distributions defined over the sets of unitaries {Ua(0)}gcrt—n
and {Ug(0)}gcrn, respectively. Suppose that both v4 and vg are 2-designs distributions.
In this case, the following properties hold:

JE, 10,00 -() [0,C(0)] € oﬁ’%t(’?) | (46)

UB ~rUB UBNVB

QNN

B.2.0X) &> Chssicad ()
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Classical shadow tomography

o exporetial 2"=d
€r(0p)

Let p € S (C), and let Oy, ..., Oy € Herm (C¥). The goal is to estimate
Tr(O1p), ..., Tr(Omp) with a desired accuracy and probability of success.

We assume that the full classical description of the statefp)is unknown but it can be
queried on a quantum device multiple times. When the state p is queried, a unitary U is
sampled randomly from a probability distribution@) and it is applied to p. The resulting

state, YpUT, is measured in the computational basis {|b)}pera1. <“|vp U‘t |\>
The state Ut b)(blU is referred to as a classical_snapshot. |
Ao Ulw¢ev1 T
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Classical shadow tomography

Now, the expected value of the classical snapshot E [UT|b)(b|U] is considered, where U is
distributed according to the probability distribution w, and b is distributed according to
the Born's rule probability distribution (b| UpU' |b). We can define the seasucament

Snof shot

Prob
d
M (p) = QIE Xb| UpUT |b>)43|b)(b| UP. (47)
b=1

channel M as:
E——
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Classical shadow tomography

(e 5 sgm, weaswe ) =
-\
( p &, 1D Cb] ) M
Assuming that M igfnvertib M1 (UT|b)(b|U) serves as an unbiased estimator
for p, meaning E [p] = e ix pis commonly known as the classical shadow of the
state p. Consequently, 0; := Tr(O;p) is an unbiased estimator for Tr(O;p):
6 == Tr(OpM ™1 (UT]b)(b\U)) implies

For appropriately chosen probability distributions
computed classically.

r(Oip) for all i € [M]. (48)

, the estimator 6; can be efficiently

Sample o0
Cyrer & €
Sawmple number N ? ‘)
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Classical shadow tomography

To estimate the number N of copies of p (sample complexity) to achieve an additive
accuracy € > 0 in the estimation of Tr(O;p) for all i € [M], with a failure probability of at
most > 0, it is important to bound the @ of the estimator:
Var (6;) ==E [6?] —~E[5]*. (49)
SR

If the median of means is used as the estimator to post-process the data &; for each

i € [M], then a number of copies

@-o G 50)

is enough to estimate, for each i € [m], Tr(O;p) up to precision £ with success probability
at least 1 — 9.
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Classical shadow tomography

2.- d€Sywn
d -
e ) R
b=1
R B - d o7 J
Var (6;) = Tr((p M (0)® /\'i_l (01) (bz_‘; U@ﬂf@) — Tr(0ip)?.
(52)

UnitorS 3-desigw

"
RWOT H, 5T fi3Terd Froap
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Classical shadow tomography

Since the uniform distribution over the Clifford group is an exact 3-design, its first three
moments coincide with those of the Haar measure.

Thus, we need to insert the formula for the second moment over the Haar measure to
find the expression of the measurement channel M (p) and then invert it.

Observation 14

The measurement channel is:
1
=—— (T / .
Mp) = 1 (Tr(p) I + p) (53)
Thus, its inverse is: )
M (p) = (d +1)p — Tr(p) . (54)
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Classical shadow tomography

To bound the variance we need to compute a third moment over the Haar measure of the
unitary group, due to the 3-design property of the Clifford group.

Observation 15
The variance is bounded by Var (6;) (3Tr(0?).

7
Using the previous bound on the variance, we have that a number of copies

N = 0(5_.2.'95(2@5)%% [Tr(_Oj@ (55)

suffices to estimate, for each i € [m], Tr(O;p) up to precision € and with success

oL ieiearer Ot 2020, 0F

0= -OI
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Thanks a lot!



