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Introduction

Lecture 4 explores diverse examples and applications where the Haar measure plays a
fundamental role in quantum information. We derive well-known formulas that reduce to
computing moments over the Haar measure, including the twirling of quantum
channels and the average gate fidelity. These formulas lay the foundation for various
applications, such as Randomized Benchmarking.
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Introduction

Furthermore, we provide detailed insights into two notable examples showcasing the
applications of the theory of unitary design. We examine Barren Plateaus in Variational
Quantum Algorithms, shedding light on the optimization landscapes encountered in such
algorithms. Additionally, we delve into Classical Shadow tomography, where the theory
of unitary design aids in designing efficient measurement strategies for reconstructing
properties of unknown quantum states.
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Recap: Haar measure

Definition 1 (Haar measure)

The Haar measure on the unitary group U(d) is the unique probability measure µH that is
both left and right invariant over the group U(d), i.e., for all integrable functions f and
for all V ∈ U(d), we have:∫

U(d)
f (U) dµH(U) =

∫
U(d)

f (UV ) dµH(U) =

∫
U(d)

f (VU) dµH(U). (1)

The Haar measure is a probability measure, satisfying:

•
∫
S 1 dµH(U) ≥ 0

•
∫
U(d) 1 dµH(U) = 1

• E
U∼µH

[f (U)] :=
∫
U(d) f (U) dµH(U)
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Recap: Computing moments

Theorem 2 (Computing moments)

Let O ∈ L
(
(Cd)⊗k

)
. The moment operator can then be expressed as a linear

combination of permutation operators:

E
U∼µH

[
U⊗kOU†⊗k

]
=
∑
π∈Sk

cπ(O)Vd(π), (2)

where the coefficients cπ(O) can be determined by solving the following linear system of
k! equations:

Tr
(
V †
d (σ)O

)
=
∑
π∈Sk

cπ(O)Tr
(
V †
d (σ)Vd(π)

)
for all σ ∈ Sk . (3)

This system always has at least one solution.
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Recap: Computing moments examples

Example 3 (First and second moment)

Given O ∈ L
(
Cd
)
, we have:

E
U∼µH

[
UOU†

]
=

Tr(O)

d
I . (4)

Given O ∈ L((Cd)⊗2), we have:

E
U∼µH

[
U⊗2OU†⊗2

]
= cI,OI+ cF,OF, (5)

where:

cI,O =
Tr(O)− d−1Tr(FO)

d2 − 1
and cF,O =

Tr(FO)− d−1Tr(O)

d2 − 1
. (6)
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Recap: Unitary designs

For instance, consider a distribution ν where the set of unitaries S is discrete and each
unitary has an equal probability of being chosen. In this case, we have:

E
V∼ν

[
V⊗kOV †⊗k

]
=

1

|S |
∑
V∈S

V⊗kOV †⊗k . (7)

Observation 4

A probability distribution ν is a unitary k-design if and only if:

E
V∼ν

[
V⊗k ⊗ V ∗⊗k

]
= E

U∼µH

[
U⊗k ⊗ U∗⊗k

]
. (8)
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Examples of moment calculations

Example 5 (Twirling of a quantum channel is a depolarizing channel)

Let ν a unitary 2-design distribution. Consider a quantum channel Φ : L(Cd) → L(Cd)
and a quantum state ρ ∈ S

(
Cd
)
. Then:

E
U∼ν

[
U†Φ

(
UρU†

)
U
]
= pΦρ+ (1− pΦ)Tr(ρ)

I

d
, (9)

where the left-hand side represents the so-called twirling of Φ, and we define:

pΦ :=
d2Fe (Φ)− 1

d2 − 1
. (10)

Here, Fe (Φ) denotes the entanglement fidelity given by
Fe (Φ) :=

1
d2 ⟨Ω|Φ⊗ I(|Ω⟩ ⟨Ω|) |Ω⟩.
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Proof of Example 4

Considering a Kraus decomposition for Φ with operators {Ki}d
2

i=1, we have:

E
U∼µH

[
U†Φ

(
UρU†

)
U
]
=

d2∑
i=1

E
U∼µH

[
U†KiUρU

†K †
i U
]

(11)

=
d2∑
i=1

E
U∼µH

Tr2
[
(I ⊗ ρ)U†⊗2(Ki ⊗ K †

i )U
⊗2F

]
(12)

=
d2∑
i=1

Tr2

[
(I ⊗ ρ) E

U∼µH

(
U⊗2(Ki ⊗ K †

i )U
†⊗2
)
F
]
, (13)

where in the second equality we used that AB = Tr2 (A⊗ B F), and in the third equality
that E

U∼µH
[f (U)] = E

U∼µH

[
f (U†)

]
for all integrable functions f .
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Proof of Example 4

Using the property of the second moment, we have:

E
U∼µH

U⊗2

 d2∑
i=1

Ki ⊗ K †
i

U†⊗2

 = cII+ cFF, (14)

where the coefficients cI and cF are given by:

cI =

∑d2

i=1Tr
(
Ki ⊗ K †

i

)
− d−1Tr

(∑d2

i=1 Ki ⊗ K †
i F
)

d2 − 1
=

∑d2

i=1 |Tr(Ki ) |2 − 1

d2 − 1
(15)

cF =
Tr
(
F
∑d2

i=1 Ki ⊗ K †
i

)
− d−1Tr

(∑d2

i=1 Ki ⊗ K †
i

)
d2 − 1

=
d − d−1

∑d2

i=1 |Tr(Ki )|2

d2 − 1
, (16)

where we used the swap-trick and the fact that
∑d2

i=1 K
†
i Ki = I .
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Proof of Example 4

Therefore:

E
U∼µH

[
U†Φ

(
UρU†

)
U
]
= Tr2 [(I ⊗ ρ) (cI,I+ cFF)F] (17)

= cITr2 ((I ⊗ ρ)F) +
1

d
(1− cI)Tr2((I ⊗ ρ)) (18)

= cIρ+ (1− cI)Tr(ρ)
I

d
. (19)
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Proof of Example 4

To conclude the proof, we observe that cI = pΦ, as defined in Eq.(10). This follows from

the relationship
∑d2

i=1 |Tr(Ki )|2 = d2Fe (Φ), as it can be easily seen:

Fe (Φ) :=
1

d2
⟨Ω|Φ⊗ I(|Ω⟩ ⟨Ω|) |Ω⟩ (20)

=
d2∑
i=1

1

d2
⟨Ω|Ki ⊗ I |Ω⟩ ⟨Ω|K †

i ⊗ I |Ω⟩ (21)

=
1

d2

d2∑
i=1

|Tr(Ki )|2 . (22)
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Examples of moment calculations

Example 6 (Average gate fidelity)

Let ν be a state 2-design distribution. Consider a quantum channel Φ : L(Cd) → L(Cd)
and a unitary channel U (·) = U (·)U†. Then, the average gate fidelity is given by:

E
|ψ⟩∼ν

[
⟨ψ| U† ◦ Φ (|ψ⟩ ⟨ψ|) |ψ⟩

]
=

dFe
(
U† ◦ Φ

)
+ 1

d + 1
, (23)

where U† (·) = U† (·)U represents the adjoint channel of U , and
Fe (Φ) :=

1
d2 ⟨Ω|Φ⊗ I(|Ω⟩ ⟨Ω|) |Ω⟩ corresponds to the entanglement-fidelity.
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Examples of moment calculations

Example 7 (Purity)

Consider the complex Hilbert space of two-qudit systems HA ⊗HB of dimensions
respectively dA = dim(HA) and dB = dim(HB). Given |ψ⟩ ∈ HA ⊗HB , let
ρA := TrB (|ψ⟩⟨ψ|). We have:

E
|ψ⟩∼ν

Tr
(
ρ2A
)
=

dB + dA
dAdB + 1

, (24)

where ν is a 2-design distribution.

14 / 36

Mobile User



Proof of Example 7

We can express the expected value as follows:

E
|ψ⟩∼ν

Tr
(
ρ2A
)
= E

|ψ⟩∼µH
Tr
(
ρ⊗2
A FA

)
= E

|ψ⟩∼ν
Tr
(
|ψ⟩⟨ψ|⊗2 (FA ⊗ IB)

)
, (25)

Since ν is a 2-design, we have:

E
|ψ⟩∼ν

Tr
(
ρ2A
)
= Tr

(
E

|ψ⟩∼µH

[
|ψ⟩⟨ψ|⊗2

]
(FA ⊗ IB)

)
= Tr

([
IA ⊗ IB + FA ⊗ FB

dAdB(dAdB + 1)

]
(FA ⊗ IB)

)
(26)

=
1

dAdB(dAdB + 1)

(
dAd

2
B + d2

AdB
)
=

dB + dA
dAdB + 1

. (27)
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Concentration inequalities

Markov’s inequality states that for a non-negative random variable X and any ε > 0, the
probability that X exceeds ε is bounded by the ratio of the expected value of X to ε:

Prob (X ≥ ε) ≤ E [X ]

ε
. (28)

In a more general form, if g is a strictly increasing non-negative function, the inequality
can be expressed as:

Prob (X ≥ ε) ≤ E [g(X )]

g(ε)
. (29)
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Levy’s lemma

Lemma 8 (Levy’s lemma)

Consider the set S2d−1 := {v ∈ Cd : ∥v∥2 = 1}. Let f : S2d−1 → R be a function
satisfying the Lipschitz condition |f (v)− f (w)| ≤ L∥v − w∥2. For all ε ≥ 0, we have the
probability bound:

Prob
|ϕ⟩∼µH

[∣∣∣∣f (ϕ)− E
|ψ⟩∼µH

[f (ψ)]

∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− 2dε2

9π3L2

)
. (30)
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Examples of concentration inequalities

Example 9

Let O ∈ Herm
(
Cd
)
be a Hermitian operator. For all ε ≥ 0, we have:

Prob
|ψ⟩∼µH

(∣∣∣∣⟨ψ|O |ψ⟩ − Tr(O)

d

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− dε2

18π3 ∥O∥2∞

)
. (31)

In particular, if O is a Pauli string P ∈ {I ,X ,Y ,Z}⊗n\{I⊗n}, we have:

Prob
|ψ⟩∼µH

(|⟨ψ|P |ψ⟩| ≥ ε) ≤ 2 exp

(
− 2nε2

18π3

)
. (32)

18 / 36

Mobile User



Proof of Example 9

To apply Levy’s lemma, we consider the function f (ψ) = ⟨ψ|O |ψ⟩ and compute its
expected value and Lipschitz constant. First, we observe that

E
|ψ⟩∼µH

[f (ψ)] = E
|ψ⟩∼µH

[⟨ψ|O |ψ⟩] = Tr[O E
|ψ⟩∼µH

|ψ⟩⟨ψ|] = Tr(O)

d
. (33)

Next, we determine the Lipschitz constant. We have

|f (v)− f (w)| = |Tr [(|u⟩⟨u| − |v⟩⟨v |)O]| ≤ ∥O∥∞∥|u⟩⟨u| − |v⟩⟨v |∥1 (34)

where we used the matrix Hölder inequality.
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Proof of Example 9

We then observe that:

∥|u⟩⟨u| − |v⟩⟨v |∥1 ≤ 2 ∥u − v∥2 . (35)

Hence, we have |f (v)− f (w)| ≤ 2∥O∥∞ ∥u − v∥2. By applying Levy’s lemma with the
Lipschitz constant of f being 2∥O∥∞, we can conclude.
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Examples of concentration inequalities

Example 10

Consider a n-qubit state |ϕ⟩ ∈ Cd with d = 2n. If we randomly pick a state |ψ⟩ from the
Haar measure, the probability that the overlap between |ψ⟩ and |ϕ⟩ is larger than ε > 0
decays double exponentially with the number of qubits n:

Prob
|ψ⟩∼µH

[
|⟨ψ|ϕ⟩|2 ≥ ε

]
≤ 2 exp(−d

2
ε). (36)
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Barren plateaus

Observation 11

Let ν be a distribution defined over the set of unitaries {U(θ)}θ∈RL . If ν forms a 2-design
distribution, then the following properties hold:

E
U∼ν

[C (θ)] = 0, Var
U∼ν

[C (θ)] ∈ O

(
poly(n)

2n

)
. (37)
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Proof of Observation 11

We have:

E
U∼ν

[C (θ)] = Tr

[
E

U∼ν

(
U(θ)ρ0U

†(θ)
)
O

]
=

Tr(O)

d
= 0, (38)

where in the last step we used that O is traceless.
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Proof of Observation 11

The second equality follows from Var
U∼ν

[C (θ)] = E
U∼ν

[
C (θ)2

]
− E

U∼ν
[C (θ)]2

E
U∼ν

[
C (θ)2

]
= Tr

[
E

U∼ν

(
U⊗2(θ)ρ⊗2

0 U†⊗2(θ)
)
O⊗2

]
(39)

= cI,ρ⊗2
0
Tr
[
IO⊗2

]
+ cF,ρ⊗2

0
Tr
[
FO⊗2

]
(40)

= cF,ρ⊗2
0
Tr
[
O2
]
, (41)

where cF,ρ⊗2
0

=
Tr(Fρ⊗2

0 )−d−1Tr(ρ⊗2
0 )

d2−1
=

Tr(ρ20)−2−n

22n−1
, and in the last step we used that O is

traceless. The proof is concluded by noting that cF,ρ⊗2
0

≤ 1
2n(2n+1) and using that

Tr
[
O2
]
∈ O (poly(n)2n).

24 / 36

Mobile User



Probability of finding a large point in cost function

We can then apply Chebyshev’s inequality, which states that for all ε > 0 we have:

Prob
U∼ν

(∣∣∣∣C (θ)− E
U∼ν

[C (θ)]

∣∣∣∣ ≥ ε

)
≤ 1

ε2
Var
U∼ν

[C (θ)] . (42)

This inequality provides an upper bound on the probability of encountering a point in the
parameter space where the cost function deviates from its expected value by more than ε.
In particular, the probability of finding a point with a cost function larger than ε decays

exponentially with the number of qubits: Prob
U∼ν

(|C (θ)| ≥ ε) ∈ O
(
ε−2 poly(n)

2n

)
.
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Barren plateaus

Similarly, with slightly more involved calculations, we can show that the exponential decay
also applies to the variance of the partial derivatives of the cost function. This
phenomenon, where the variance of the partial derivatives of the cost function decays
exponentially with the number of qubits n, is commonly referred to as Barren Plateaus.
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Barren plateaus

To analyze the partial derivatives of the cost function, we can express the parameterized
unitary circuit U(θ) as the product of two unitary operators: U(θ) = UAUB , where
UA =

∏L
l=µ+1 e

−iθlHl and UB =
∏µ

l=1 e
−iθlHl . Consequently, we can write the partial

derivative of the cost function as follows:

∂µC (θ) = Tr
[
(∂µU(θ)) ρ0U

†(θ)O
]
+ Tr

[
U(θ)ρ0

(
∂µU

†(θ)
)
O
]

(43)

= −i Tr
[
UAHµUBρ0U

†
BU

†
AO
]
+ i Tr

[
UAUBρ0U

†
BHµU

†
AO
]

(44)

= i Tr
[
UBρ0U

†
B

[
Hµ,U

†
AOUA

]]
, (45)

where we denoted by ∂µ the partial derivative with respect to θµ, we used that
∂µU(θ) = −iUAHµUB and the cyclicity of the trace. Using this expression for the partial
derivative of the cost function, we can prove the following:

27 / 36



Barren plateaus

Observation 12

Let νA, νB be probability distributions defined over the sets of unitaries {UA(θ)}θ∈RL−µ

and {UB(θ)}θ∈Rµ , respectively. Suppose that both νA and νB are 2-designs distributions.
In this case, the following properties hold:

E
UA∼νA
UB∼νB

[∂µC (θ)] = 0, Var
UA∼νA
UB∼νB

[∂µC (θ)] ∈ O

(
poly(n)

2n − 1

)
. (46)
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Classical shadow tomography

Let ρ ∈ S
(
Cd
)
, and let O1, . . . ,OM ∈ Herm

(
Cd
)
. The goal is to estimate

Tr(O1ρ), . . . ,Tr(OMρ) with a desired accuracy and probability of success.

We assume that the full classical description of the state ρ is unknown but it can be
queried on a quantum device multiple times. When the state ρ is queried, a unitary U is
sampled randomly from a probability distribution µ, and it is applied to ρ. The resulting
state, UρU†, is measured in the computational basis {|b⟩}b∈[d ].

The state U†|b⟩⟨b|U is referred to as a classical snapshot.
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Classical shadow tomography

Now, the expected value of the classical snapshot E
[
U†|b⟩⟨b|U

]
is considered, where U is

distributed according to the probability distribution µ, and b is distributed according to
the Born’s rule probability distribution ⟨b|UρU† |b⟩. We can define the measurement
channel M as:

M (ρ) :=
d∑

b=1

E
U∼µ

[
⟨b|UρU† |b⟩U†|b⟩⟨b|U

]
. (47)
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Classical shadow tomography

Assuming that M is invertible, ρ̂ := M−1
(
U†|b⟩⟨b|U

)
serves as an unbiased estimator

for ρ, meaning E [ρ̂] = ρ. The matrix ρ̂ is commonly known as the classical shadow of the
state ρ. Consequently, ôi := Tr(Oi ρ̂) is an unbiased estimator for Tr(Oiρ):

ôi := Tr(OiM−1
(
U†|b⟩⟨b|U

)
) implies E [ôi ] = Tr(Oiρ) for all i ∈ [M]. (48)

For appropriately chosen probability distributions µ, the estimator ôi can be efficiently
computed classically.
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Classical shadow tomography

To estimate the number N of copies of ρ (sample complexity) to achieve an additive
accuracy ε > 0 in the estimation of Tr(Oiρ) for all i ∈ [M], with a failure probability of at
most δ > 0, it is important to bound the variance of the estimator:

Var (ôi ) := E
[
ô2i
]
− E [ôi ]

2 . (49)

If the median of means is used as the estimator to post-process the data ôi for each
i ∈ [M], then a number of copies

N = O

(
log (2M/δ)

ε2
max
i∈[m]

[Var (ôi )]

)
(50)

is enough to estimate, for each i ∈ [m], Tr(Oiρ) up to precision ε with success probability
at least 1− δ.
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Classical shadow tomography

Observation 13

M (ρ) = Tr1

(
(ρ⊗ I )

(
d∑

b=1

E
U∼µ

[
U†⊗2|b⟩⟨b|⊗2U⊗2

]))
(51)

Var (ôi ) = Tr

((
ρ⊗M−1 (Oi )⊗M−1 (Oi )

)( d∑
b=1

E
U∼µ

[
U†⊗3|b⟩⟨b|⊗3U⊗3

]))
− Tr(Oiρ)

2.

(52)
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Classical shadow tomography

Since the uniform distribution over the Clifford group is an exact 3-design, its first three
moments coincide with those of the Haar measure.
Thus, we need to insert the formula for the second moment over the Haar measure to
find the expression of the measurement channel M (ρ) and then invert it.

Observation 14

The measurement channel is:

M (ρ) =
1

d + 1
(Tr(ρ) I + ρ) . (53)

Thus, its inverse is:

M−1 (ρ) = (d + 1)ρ− Tr(ρ) I . (54)
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Classical shadow tomography

To bound the variance we need to compute a third moment over the Haar measure of the
unitary group, due to the 3-design property of the Clifford group.

Observation 15

The variance is bounded by Var (ôi ) ≤ 3Tr
(
O2

i

)
.

Using the previous bound on the variance, we have that a number of copies

N = O

(
ε−2 log (2M/δ)max

i∈[m]

[
Tr
(
O2

i

)])
(55)

suffices to estimate, for each i ∈ [m], Tr(Oiρ) up to precision ε and with success
probability at least 1− δ.
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Thanks a lot!
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