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Problem 1. To better prepare for future topics on quantum learning algorithms, it is important to be-
come familiar with how classical learning models extend to the quantum setting. The following problems are
designed to help you reflect on and articulate the key differences and implications of quantum learning models.

For each of the following classical learning models, we provide a brief description. Your task is to define the
corresponding quantum learning model, highlighting the key differences. Specifically, describe:

• the type of oracle access (classical vs. quantum),

• the nature of the data provided to the learner,

• how hypotheses are produced,

• any differences in complexity notions (e.g., sample or query complexity).

We provide the example of exact learning to illustrate how to answer the question.

Exact Learning: The learner has access to a membership oracle MQ(c) for the target concept
c ∈ C. Given input x ∈ {0, 1}n, the oracle returns c(x). The learner must output a hypothesis h
such that h(x) = c(x) for all x, with probability at least 2/3.

Quantum analogue: In the quantum setting, the learner has access to a quantum membership oracle
QMQ(c), which performs the unitary transformation QMQ(c) : |x, b⟩ 7→ |x, b⊕c(x)⟩ for all x ∈ {0, 1}n
and b ∈ {0, 1}. The learner starts with an initial quantum state, makes a sequence of queries to
the quantum oracle, and finally performs a measurement to produce a classical hypothesis h. The
quantum query complexity is the number of calls to the QMQ oracle needed to exactly identify c (i.e.,
produce h = c with high probability), optimized over all quantum learners.

(a) PAC Learning: The learner has access to a random example oracle PEX(c,D) that returns pairs
(x, c(x)), where x is drawn from an unknown distribution D over {0, 1}n. The learner must output a
hypothesis h such that with probability at least 1 − δ, Prx∼D[h(x) ̸= c(x)] ≤ ε. Define the quantum
analogue of this model.

(b) Agnostic Learning: The learner has access to a labeled example oracle AEX(D) that returns samples
(x, b) drawn from a distribution D over {0, 1}n+1. The learner must output a hypothesis h such that
with probability at least 1 − δ, errD(h) ≤ minc∈C errD(c) + ε, where errD(h) := Pr(x,b)∼D[h(x) ̸= b].
Define the quantum analogue of this model.
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Problem 2. In class, we discussed the fundamental difference between fully entangled measurements and
incoherent measurements in quantum state tomography. Fully entangled measurements (e.g., Schur sampling
on n copies) achieve optimal copy complexity n = Θ(d2/ϵ2), but require joint access to all n copies of the state,
which is infeasible on near-term devices. Incoherent measurements, on the other hand, measure one copy at
a time and are experimentally feasible, but require a higher copy complexity of n = Θ(d3/ϵ2). Recent works
suggest that a more realistic and practical model lies between these extremes: t-entangled measurements,
which allow measurements on t copies at a time. Surprisingly, it was not known until recently whether such
intermediate levels of entanglement could yield meaningful improvements in sample complexity. (Note: I
recommend that you independently search for and study research papers related to this topic.)

(a) Explain why incoherent measurements are easier to implement experimentally but lead to worse copy
complexity. Provide two reasons based on physical and algorithmic considerations.

(b) Describe one reason why it is difficult to adapt techniques from fully entangled tomography (e.g., Schur
sampling) to the intermediate t-entangled regime.

(c) Suppose you can only measure t = 2 copies of the state ρ at a time. Why is it nontrivial to determine
whether this offers an advantage over incoherent (t = 1) measurements?

(d) Consider the following interpolation question: For fixed dimension d and error ϵ, how do you expect
the copy complexity n of t-entangled tomography to scale with t in the range 1 ≤ t ≤ d2? Justify your
intuition qualitatively, not quantitatively.

(e) In your own words, discuss why understanding the intermediate t-entangled regime is important both
theoretically and practically for near-term quantum computing platforms.

Problem 3. To prepare for future lectures, it is important to become familiar with the basics of quantum
query complexity. In class, we also discussed success probabilities of quantum algorithms and how they can
be amplified using standard boosting techniques. The following problem is designed to help reinforce these
foundational ideas.

Let f : {0, 1}n → {0, 1} be a Boolean function. Suppose we have a randomized (or quantum) algorithm that
computes f(x) correctly with constant success probability, say at least 2/3, using R(f) (or Q(f)) queries.
Now, we want to reduce the error probability of the algorithm to some small value ε, i.e., we want the success
probability to be at least 1− ε on all inputs. The question is: how many queries are required to achieve this
higher accuracy? Prove the following:

(a) For randomized algorithms, the number of queries needed to reduce the error to ε is O(R(f) log(1/ε)).

(b) For quantum algorithms, the number of queries needed to reduce the error to ε is O(Q(f) log(1/ε)).

In other words, by repeating the base algorithm O(log(1/ε)) times and appropriately aggregating the outputs
(e.g., via majority vote or other amplification techniques), we can achieve error probability ε with only a
logarithmic overhead in query complexity.
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Problem 4. In class, we have discussed the basic ideas behind deriving lower bounds in learning settings.
Building on those ideas, as well as the references provided during the lectures, you are encouraged to solve
the following problem. While the specific technical tools will be covered in more detail in later lectures,
attempting this problem using the concepts from class and exploring relevant literature will be a valuable
exercise. (Note: No specific paper is pointed out intentionally, as part of the learning process is to explore
and identify useful references on your own.)

Let O1, . . . , OM be a set of traceless Hermitian observables acting on n-qubit systems, each with operator
norm ∥Oi∥∞ = 1, and assume the symmetry condition: Oi = −Oi+M/2, for all i = 1, . . . ,M/2. Moreover,
each Oi has eigenvalues in {±1}. Define the correlation complexity of this observable set as:

δ(O1, . . . , OM ) := sup
|ϕ⟩

2

M

M/2∑
i=1

⟨ϕ|Oi|ϕ⟩2. (1)

Suppose a learning algorithm without quantum memory attempts to learn the expectation values tr(Oiρ)
to within additive error ε, for all i ∈ {1, . . . ,M}, with success probability at least 2/3. Let the number of
copies of ρ used by the algorithm be T .

(a) Show that for the special family of states

ρx =
1 + 3εOx

2n
, (2)

the expectation value tr(Oxρx) = 3ε, while tr
(
Ox · I

2n

)
= 0.

(b) Show that, under the assumption ε < 0.29, any learning algorithm without quantum memory requires
at least

T ≥ Ω

(
1

ε2δ(O1, . . . , OM )

)
(3)

copies of ρ, by performing a many-versus-one distinguishing reduction and applying Jensen’s inequality.

(c) Intuitively explain the role of δ(O1, . . . , OM ) in characterizing the hardness of shadow tomography.
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