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How can we estimate the value of   

when given access to copies of a quantum state ? (for large )

Tr (ρk)
ρ k ∈ ℕ

ρ ρ ρ

ρ ρ ρ

⋯

⋯

Given ρ⊗k

Tr (ρk)
Integer Rényi entropy 

Nonlinear function calculations 
Entanglement spectroscopy 

Quantum error mitigation 
Quantum Gibbs state preparation

-approximateε

⇒

(efficient) quantum protocol 
& some post processing



Swap test

Tr(S (ρ1 ⊗ ρ2)) = Tr (ρ1ρ2)
 = swap operatorS



Generalized swap test

Tr(Wπ (ρ1 ⊗ ρ2 ⊗ ⋯ ⊗ ρn−1 ⊗ ρn)) = Tr (ρ1ρ2⋯ρn−1ρn)
 = cyclic shift permutation operatorWπ

* Depth:  

* Width:  

* Copies:  

* Multi-qubit gates: 

𝒪(k)

𝒪(k)

𝒪(k)

𝒪(k)

To estimate Tr (ρk)

“Direct estimations of linear and nonlinear functionals of a quantum state”. Physical Review Letters 88, 217901 (2002).



Two copy test

* Note that original entangled pure state  needed, where |ψAB⟩ ρA = TrB ( |ψ⟩⟨ψ |AB )

* Depth:  

* Width:  

* Copies:  

* Multi-qubit gates: 

𝒪(1)

𝒪(k)

𝒪(k)

𝒪(k)

To estimate Tr (ρk)

“Entanglement spectroscopy with a depth-two quantum circuit”. Journal of Physics A: Mathematical and Theoretical 52, 044001 (2019).



Qubit-efficient two copy test

“Qubit- efficient entanglement spectroscopy using qubit resets”. Quantum 5, 535 (2021).

* Depth:  

* Width:  

* Copies:  

* Multi-qubit gates: 

𝒪(k)

𝒪(1)

𝒪(k)

𝒪(k)

To estimate Tr (ρk)
* Using qubit-reset strategies

* Original entangled pure state  needed|ψAB⟩



Multivariate trace estimation algorithm

“Multivariate trace estimation in constant quantum depth”. Quantum 8, 1220 (2024)

* Depth:  

* Width:  

* Copies:  

* Multi-qubit gates: 

𝒪(1)

𝒪(k)

𝒪(k)

𝒪(k)

To estimate Tr (ρk)

* Inspired by Shor’s error correction code



Comparison

Summary of resources required by different algorithms 
to estimate the values of  within an error margin of {Tr(ρi)}k

i=1 ϵ
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pi |ψi⟩⟨ψi | , σ =
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Intuition
Consider two quantum states:  ρ =

r

∑
i=1

pi |ψi⟩⟨ψi | , σ =
r

∑
i=1

qi |ϕi⟩⟨ϕi |

If

Tr(ρ1) = Tr(σ1)
Tr(ρ2) = Tr(σ2)
⋮
Tr(ρr−1) = Tr(σr−1)
Tr(ρr) = Tr(σr)

then,

p1 = q1
p2 = q2
⋮

pr−1 = qr−1
pr = qr

?

Answer: YES

(assume descending order  and also for )p1 ≥ p2 ≥ …pr−1 ≥ pr ≥ 0 qi
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Newton-Girard method

Consider the equation having these eigenvalues as root in the form of
r

∏
m=1

(x − pm) = 0.

The values of  are now the -th power sum of the roots. Denote the power sum asTr(ρi) i

Pi :=
r

∑
m=1

pi
m = Tr(ρi) .

Key observation: exactly knowing  is equivalent to knowing .{Tr(ρi)}r
i=1 {pi}r

i=1
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Newton-Girard method
Simply expanding the terms to get: 

r

∏
m=1

(x − pm) =
r

∑
k=0

(−1)kakxr−k,

where

a0 = 1,

a1 = p1 + p2 + ⋯ + pr = ∑
1≤α≤r

pα,

a2 = p1p2 + p1p3 + ⋯ + pr−1pr = ∑
1≤α<β≤r

pαpβ,

a3 = ∑
1≤α<β<γ≤r

pαpβpγ,

⋮

ar =
r

∏
i=1

pi .



Newton-Girard method
The Newton-Girard method states the relationship between 

the elementary symmetric polynomials and the power sums recursively.

For all r ≥ k ≥ 1, ak =
1
k

k

∑
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(−1)i−1ak−iPi.
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Newton-Girard method
The Newton-Girard method states the relationship between 

the elementary symmetric polynomials and the power sums recursively.

For all r ≥ k ≥ 1, ak =
1
k

k

∑
i=1

(−1)i−1ak−iPi.

Uniquely defined Pi = Tr(ρi)Also unique

Therefore, the set of eigenvalues is uniquely determined  

as the roots of the equation 
r

∏
m=1

(x − pm) .



Estimation with errors
Unfortunately in real-world situations, 

we cannot exactly calculate the trace of powers.



Estimation with errors
Unfortunately in real-world situations, 

we cannot exactly calculate the trace of powers.

Next challenge: If the error of estimated power sums  is small, 
are the roots obtained by the Newton-Girard method close to the eigenvalues of 

Pi = Tr(ρi)
ρ?



Estimation with errors
Unfortunately in real-world situations, 

we cannot exactly calculate the trace of powers.

Next challenge: If the error of estimated power sums  is small, 
are the roots obtained by the Newton-Girard method close to the eigenvalues of 

Pi = Tr(ρi)
ρ?

Answer: NO



Estimation with errors
Unfortunately in real-world situations, 

we cannot exactly calculate the trace of powers.

Next challenge: If the error of estimated power sums  is small, 
are the roots obtained by the Newton-Girard method close to the eigenvalues of 

Pi = Tr(ρi)
ρ?

Answer: NO

Counterexample — Wilkinson’s polynomial 

* The location of the roots can be very sensitive to perturbations 
in the coefficients of the polynomial



Wilkinson’s polynomial
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Wilkinson’s polynomial
w(x) =

20

∏
i=1

(x − i) = (x − 1)(x − 2)⋯(x − 20)

Expanding the polynomial, one finds: w(x) = x20 − 210x19 + 20615x18 − ⋯

If the coefficient of   is decreased from  by  to x19 −210 2−23 −210.0000001192

The 20 roots become: 

* Some of the roots are greatly displaced, even though the change to the coefficient is tiny 
and the original roots seem widely spaced.
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Main result: iterative  estimation algorithmTr(ρi)
[1] Estimate  for , using a constant-depth quantum circuit consisting of 

 qubits and  CSWAP operations using multivariate trace estimation, where  is the rank 
of , and denote the estimated value as .

Pi = Tr(ρi) i = 1,2,…, r
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Main result: iterative  estimation algorithmTr(ρi)
[1] Estimate  for , using a constant-depth quantum circuit consisting of 

 qubits and  CSWAP operations using multivariate trace estimation, where  is the rank 
of , and denote the estimated value as .

Pi = Tr(ρi) i = 1,2,…, r
𝒪(i) 𝒪(i) r

ρ Qi → Q1, …, Qr

Example ( )i = 8

𝔼 [(−1)∑4
i=1 xi] = Re (Tr(ρ8))
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Main result: iterative  estimation algorithmTr(ρi)
[1] Estimate  for , using a constant-depth quantum circuit consisting of 

 qubits and  CSWAP operations using multivariate trace estimation, where  is the rank 
of , and denote the estimated value as .

Pi = Tr(ρi) i = 1,2,…, r
𝒪(i) 𝒪(i) r

ρ Qi → Q1, …, Qr

[2] Calculate the elementary symmetric polynomial bi =
1
i

i

∑
ℓ=1

(−1)ℓ−1bi−ℓQℓ, b1 = 1, 1 ≤ i ≤ r .
→ b1, …, br

[3] Calculate the estimated value  by Qi (i > r) Qi =
r

∑
ℓ=1

(−1)ℓ−1bℓQi−ℓ ∼ Tr(ρi) .
→ Qr+1, …

The output of our algorithm  guarantees an -approximate trace of powers Qi ϵ Tr(ρi)
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Rank is all you need — Lemma 1
•   the elementary symmetric polynomials corresponding to each  and . 

•  is defined as the estimated value of  on a quantum device for  

otherwise 

ak, bk = Pi Qi

Qi Pi = Tr(ρi) i ≤ r

Qi =
r

∑
ℓ=1

(−1)ℓ−1bℓQi−ℓ .
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Let , then the following holds:  
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Rank is all you need — Lemma 1

Let , then the following holds:  

where  is the error that occurred by the estimation of .

tk := bk − ak | tk | ≤
k

∑
j=1

|ϵj |

j
ϵj = Qj − Pj Pj = Tr(ρ j)

Lemma 1

Proof. By strong mathematical induction logic.

•   the elementary symmetric polynomials corresponding to each  and . 

•  is defined as the estimated value of  on a quantum device for  

otherwise 

ak, bk = Pi Qi

Qi Pi = Tr(ρi) i ≤ r

Qi =
r

∑
ℓ=1

(−1)ℓ−1bℓQi−ℓ .
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Suppose that 

 

holds for , where  is defined as: 

 

Then the following relation always holds: 

 

for .

εi := |ϵi | = |Pi − Qi | <
ϵ

2T ln r
i = 1,2,…, r T

T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

≤ kr .

|ϵi | = |Pi − Qi | ≤ ϵ

i = 1,2,…, k

Theorem 1



Rank is all you need — Theorem 1

Suppose that 

 

holds for , where  is defined as: 

 

Then the following relation always holds: 

 

for .

εi := |ϵi | = |Pi − Qi | <
ϵ

2T ln r
i = 1,2,…, r T

T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

≤ kr .

|ϵi | = |Pi − Qi | ≤ ϵ

i = 1,2,…, k

Theorem 1

Proof. By applying Lemma 1 + long calculation with some mathematical trick.



Rank is all you need — Corollary 1

To estimate  for all  within an additive error of  and with a success probability of at 
least , where , it is necessary to estimate each  for  within an additive 
error of , as defined in Theorem 1. This can be achieved by using 

 

runs on a constant-depth quantum circuit consisting of  qubits and  CSWAP 
operations. Here,  is defined in Theorem 1.

Tr(ρi) i ≤ k ϵ
1 − δ δ ∈ (0,1) Tr(ρ j) j ≤ r

εj

𝒪 ( T2

ϵ2
ln2 r ln ( 1

δ ))
𝒪( j) 𝒪( j)

T

Corollary 1



Rank is all you need — Corollary 1

To estimate  for all  within an additive error of  and with a success probability of at 
least , where , it is necessary to estimate each  for  within an additive 
error of , as defined in Theorem 1. This can be achieved by using 

 

runs on a constant-depth quantum circuit consisting of  qubits and  CSWAP 
operations. Here,  is defined in Theorem 1.

Tr(ρi) i ≤ k ϵ
1 − δ δ ∈ (0,1) Tr(ρ j) j ≤ r

εj

𝒪 ( T2

ϵ2
ln2 r ln ( 1

δ ))
𝒪( j) 𝒪( j)

T

Corollary 1

* Note that  scales from a constant to , mainly depending on the largest eigenvalue  of . 

* If  is not close to 1 (e.g., ), then . This implies that if  is far from a pure state, 
then  is a constant value.

T kr p1 ρ

p1 p1 = 0.5 T = 𝒪(1) ρ
T
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Rank is all you need — Theorem 2
Extension: Estimating , the trace of powers with arbitrary observables Tr(Mρk) M .

Suppose that  and  

holds for where the operator norm  is defined corresponding to the  

-norm for vectors , as ,  

Then the following holds: 

 

for 

εi,M := |ϵi,M | = |Pi,M − Qi,M | <
ϵ
2

, εi = |ϵi | = |Pi − Qi | <
ϵ

2T∥M∥∞ ln r
,

i = 1,2,…, r, ∥M∥∞

∞ ∥x∥∞ ∥M∥∞ = sup
x≠0

∥Mx∥∞

∥x∥∞
T =

r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

≤ kr .

|ϵi,M | = |Pi,M − Qi,M | ≤ ϵ

i = 1,2,…, k .

Theorem 2



Rank is all you need — Corollary 2

Suppose there is an efficient decomposition , where  and  are tensor 

products of Pauli operators . The quantity  is bounded by a constant .  

To estimate  for all  within an additive error of  and with a success probability of at least , 
where , it is necessary to estimate each  for  within an additive error of . 

This can be achieved by using  runs on a constant-depth quantum circuit consisting of  

qubits and  CSWAP operations, and estimating each  for  within an additive error of , by using

 runs on a constant-depth quantum circuit consisting of  qubits and  CSWAP 

operations.  Here,  and  are defined in Theorem 2.

M =
NM

∑
ℓ=1

aℓPℓ aℓ ∈ ℝ Pℓ = σℓ1
⊗ ⋯ ⊗ σℓn

σℓ1
, …, σℓn

∈ {σx, σy, σz, I}
NM

∑
ℓ=1

|aℓ | = 𝒪(c) c

Tr(Mρi) i ≤ k ϵ 1 − δ
δ ∈ (0,1) Tr(Mρ j) j ≤ r εj,M

𝒪 ( c2NM

ϵ2
ln ( 1

δ )) 𝒪( j)

𝒪( j) Tr(ρ j′ ) j′ ≤ r εj′ 

𝒪 ( T2

ϵ2
ln2 r ln ( 1

δ )) 𝒪( j′ ) 𝒪( j′ )

εj,M, εj′ 
T

Corollary 2



(Effective) Rank is all you need — Lemma 2
* If  is not close to 1 (e.g., ), then . This implies that if  

is far from a pure state, then  is a constant value. 

* Our algorithm may perform suboptimally on pure states.

p1 p1 = 0.5 T = 𝒪(1) ρ
T𝒪 ( ϵ2

ln2 r ln ( 1
δ ))T2



(Effective) Rank is all you need — Lemma 2

Effective rank with error  is defined as the minimum value , which satisfies ϵ rϵ

rϵ

∑
i=1

pi > 1 − ϵ .
Definition (Effective rank)

* If  is not close to 1 (e.g., ), then . This implies that if  
is far from a pure state, then  is a constant value. 

* Our algorithm may perform suboptimally on pure states.

p1 p1 = 0.5 T = 𝒪(1) ρ
T𝒪 ( ϵ2

ln2 r ln ( 1
δ ))T2
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(Effective) Rank is all you need — Lemma 2

For every integer , the following holds: k ≥ 2
r

∑
i=1

pk
i −

rϵ

∑
i=1

pk
i < ϵ2 .

Lemma 2

Effective rank with error  is defined as the minimum value , which satisfies ϵ rϵ

rϵ

∑
i=1

pi > 1 − ϵ .
Definition (Effective rank)

* If  is not close to 1 (e.g., ), then . This implies that if  
is far from a pure state, then  is a constant value. 

* Our algorithm may perform suboptimally on pure states.

p1 p1 = 0.5 T = 𝒪(1) ρ
T

As the maximum eigenvalue of  approaches 1, the  decreases!ρ rϵ

Lemma 2 suggests that we only need  for the estimation.{Tr(ρi)}rϵ
i=1

𝒪 ( ϵ2
ln2 r ln ( 1

δ ))T2

(Possible to resolve issues with pure states)



Overview
• Trace of powers & Literature review 

• Mathematical intuitions 

• Main results: algorithm, lemmas, theorems, corollaries 

• Numerical simulations 

• Applications 

• Concluding remarks



Reduction of required runs

Analyze the behavior of  as the eigenvalues of  change.T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

ρ



Reduction of required runs

Analyze the behavior of  as the eigenvalues of  change.T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

ρ

Since we don't know the exact distribution of the eigenvalues of an arbitrary density matrix ,  
we consider several typical cases.

ρ

Uniform non-maximum Arithmetically decaying Geometrically decaying



Reduction of required runs
r = 4, k = 16 r = 4, k = 128

r = 8, k = 16 r = 8, k = 128



Reduction of required runs

T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2



Reduction of required runs

 constant∼

≤ T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

𝒪(1)
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Reduction of required runs

 constant∼

∼ 𝒪(kr)

≤ T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

≤ kr𝒪(1)



Reduction of required runs

 constant∼

∼ 𝒪(kr)

≤ T =
r

∑
i=1

pi(1 − pk
i )(1 − pr

i )
(1 − pi)2

≤ kr𝒪(1)

The value of  is significantly less 
than the upper bound in most cases.  

Especially when the state is mixed 
(e.g., the largest eigenvalue is small), 
the system is large (e.g.,  is large), or 

 grows large, the expected 
advantage becomes more dramatic 

compared to the upper bound.

T

r
k



Numerical simulation
(r, k) = { }

Arithmetically decaying 
T ∼ 𝒪(1)

Geometrically decaying
T ∼ 𝒪(kr)
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Applications



Calculating the nonlinear functions of quantum state

Let  be a quantum state with rank .ρ r

Suppose there exist  and a slowly-growing function  (as a function of ) 

such that  is approximated by a degree  polynomial  

on the interval , in the sense that and  

ϵ > 0 C m

g : ℝ → ℝ m f(x) =
m

∑
k=0

ckxk

[0,1] sup
x∈[0,1]

|g(x) − f(x) | <
ϵ
2r

,
m

∑
k=0

|ck | < C .
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Typically,  
so our enhanced theorem offers advantages for estimating 

m ≫ r,
g(ρ) .

When ,  becomes . We can efficiently estimate  which has 
applications in thermodynamics and the density exponentiation algorithm.

g(x) = eβx C e|β| Tr(eβρ)
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Quantum Gibbs state preparation

The truncated Taylor series  

is used as the cost function for variational quantum Gibbs state preparation.

Sk(ρ) =
k

∑
i=1

Tr ((ρ − I)k ρ)

It is shown that the fidelity  between the optimized state  and the 

Gibbs state  is bounded by   

where  is the inverse temperature of the system,  

and  is a constant that satisfies .

F (ρ(θ0), ρG) ρ(θ0)

ρG F(ρ(θ0), ρG) ≥ 1 − 2 (βϵ +
2r

k + 1
(1 − Δ)k+1)

β

Δ −Δ ln(Δ) <
1

k + 1
(1 − Δ)k+1
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Quantum Gibbs state preparation

By using the inequality  to achieve 

, we need to set , where  is the trace distance.

D(ρ(θ0), ρG) < 1 − F (ρ (θ0), ρG),

T (ρ(θ0), ρG) < ϵ k = 𝒪 ( ⋅ ) T

Previous:  qubits and CSWAP operations are needed.k = 𝒪 ( r
ϵ4 )

Ours:  qubits and CSWAP operations are needed.k = 𝒪 (r)

Significantly reduces the number of qubits and CSWAP operations. 
* Independent of the desired error bound .ϵ
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Virtual distillation protocol offers a method to address this issue. 
The protocol involves using collective measurements of  copies 

of the mixed state  to suppress incoherent errors.
k

ρ

This approach approximates the error-free expectation value  

where  denotes the number of copies used.

⟨M⟩(k)
vd =

Tr(Mρk)
Tr(ρk)

,

k
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Concluding remarks
• Our main contribution lies in proving that the error increases linearly at most 

when applying the Newton-Girard method with a recursive strategy. 

• We also generalize the result to traces of powers with observables , which are 
represented as  

• Our work can enhance any previous algorithms, including  and/or  

• We can estimate the trace of powers with -depth, -width, and only 
-CSWAP operations. 

• Our method also provides advantages in copy complexity when estimating the 
trace of large powers with low-rank states or sufficiently mixed states.

M
Tr(Mρk) .

Tr(ρk) Tr(Mρk) .

𝒪(1) 𝒪(r) 𝒪(r)



Future work
• It remains open for future work to find more applications that can take advantage 

of our work. 

• Generalizing this result to multivariate trace estimation, or even , can open 
up more possibilities, such as calculating functions that satisfy the data-processing 
inequality under unital quantum channels, which can be an alternative tool for 
distance measures. 

• Tightening the bounds on Theorems 1 and 2 is an interesting future research 
topic. 

• More about the effectiveness of our “rank is all you need” scheme.

Tr(ρkσl)
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