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Estimating the trace of powers of identical k density matrices (i.e., Tr(pk)) IS a crucial subroutine for many
applications such as calculating nonlinear functions of quantum states, preparing quantum Gibbs states, and
mitigating quantum errors. Reducing the requisite number of qubits and gates is essential to fit a quantum
algorithm onto near-term quantum devices. Inspired by the Newton-Girard method, we developed an algorithm

that uses only O(r) qubits and O(r) multi-qubit gates, where r is the rank of p. We prove that the estimation of
{Tr(,o")};’=1 is sufficient for estimating the trace of powers with large k > r. With these advantages, our algorithm
brings the estimation of the trace of powers closer to the capabilities of near-term quantum processors. We show
that our results can be generalized for estimating Tr(Mpk), where M is an arbitrary observable, and demonstrate

the advantages of our algorithm in several applications.




Overview

¢ Trace of powers & Literature review

® Mathematical intuitions

® Main results: algorithm, lemmas, theorems, corollaries
® Numerical simulations

® Applications

® Concluding remarks



Trace of powers

How can we estimate the value of Tr (pk)

when given access to copies of a quantum state p? (for large k € N)



Trace of powers

How can we estimate the value of Tr (pk)

when given access to copies of a quantum state p? (for large k € N)

Quantum error mitigation

E Integer Rényi entropy

E £-approximate Nonlinear function calculations
- k _

— = |r (p ) “ntanglement spectroscopy
—

—

-

-

Quantum Gibbs state preparation

(efficient) guantum protocol
& some post processing

Given p®*



Swap test

A

Ir (S (1 ® Pz)) =Tr (p1p2)

S = swap operator



Generalized swap test

.... A To estimate Ir (pk)

g A e Depth 0
Pi .-l * Width: O(k)
o BN |

: l * Copies: O(k)

Pn-1 * Multi-qubit gates: O(k)

Ir (W” (P ® P ® -+ ®p,_ ®py) ) =Tr (p1p27*Pu-1Pn)
W” = cyclic shift permutation operator

“Direct estimations of linear and nonlinear functionals of a quantum state”. Physical Review Letters 88, 217901 (2002).
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To estimate Ir (pk)
* Depth: O(1)

* Width: O(k)

x Copies: O(k)

* Multi-qubit gates: O(k)

* Note that original entangled pure state |y,) needed, where p, = Trp ( h//)(l//lAB)

“Entanglement spectroscopy with a depth-two quantum circuit”. Journal of Physics A: Mathematical and Theoretical 52, 044001 (2019).



Qubit-efficient two copy test

o O

-

o O

-

* * *—— - -- ° A
S A S A S A
+ N \ \ N
i [41) | | |
X 0) — X 0) — N 0) — A}
T 0 ) | 190 | 19n)

To estimate Ir (pk)
* Depth: O(k)

* Width: 6(1)

* Copies: O(k)

* Multi-qubit gates: O(k)

* Using qubit-reset strategies

* Original entangled pure state |y, 3) needed

“Qubit- efficient entanglement spectroscopy using qubit resets” Quantum 5, 535 (2021).



Multivariate trace estimation algorithm

O) l —
0) ’ ? -
0) b To estimate Ir (pk)
0) b 7 t 3 * Depth: 6(1)
0) 2
0) - X4 x Width: @(k)
p1 "V"l x Copies: 0O(k)
ps —L\- avVa
0, "V" MI * Multi-qubit gates: O(k)
pr ——L\ aVa
Ps ZAS "v" * Inspired by Shor’s error correction code
pa N ZAS
ps ZAS

“Multivariate trace estimation in constant quantum depth”. Quantum 8, 1220 (2024)



Comparison

Summary of resources required by different algorithms

to estimate the values of {Tr(,o")}i.‘:1 within an error margin of €

Algorithm # Depth | # Qubits | # CSWAP # Copies Original |1))
Generalized swap test O(k) O(k) O(k) O (f—;) NOT required
Hadamard test O(k) O(k) O(k) O (':—z Required
Two copy test O(1) O(k) O(k) O (’:—z) Required
Qubit-efficient two copy test O(k) O(1) O(k) O (’:—;) Required
Multivariate trace estimation O(1) O(k) O(k) O (':—;) NOT required
k2rtin?r
. O ( €2 y P1 =~ 1 )
Ours (this work) O(1) O(r) O(r) 212 NOT required
@, ("” 2 "), otherwise
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® Trace of powers & Literature review

e Mathematical intuitions

® Main results: algorithm, lemmas, theorems, corollaries
® Numerical simulations

® Applications

® Concluding remarks



Intuition

Consider two quantum states: p = Zpih//)(l//,-\, 0 = Z q; | p;){;]
i=1 i=1

(assume descending orderp, > p, > ...p,_; = p, > 0 and also for g)
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Consider two quantum states: p = Zpih//)(l//,-\, 0 = Z q; | p;){;]
i=1 i=1

(assume descending orderp, > p, > ...p,_; = p, > 0 and also for g)

Tr(p") = Tr(c")

P1 =49
Tr(p*) = Tr(c”) Pr=q
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Tr(pr_l) — Tr((yr_l) Pr—1 = 4,1
Pr=4q,

Tr(p") = Tr(c")



Intuition

Consider two quantum states: p = Zpih//)(l//,-\, 0 = Z q; | p;){;]
i=1 i=1

(assume descending orderp, > p, > ...p,_; = p, > 0 and also for g)

Tr(p") = Tr(c")

P1 =49
Tr(p*) = Tr(c”) Pr=q
I : then, : ?
Tr(pr_l) — Tr((yr_l) Pr—1 = 4,1
Pr=4q,

Tr(p") = Tr(c")

Answer: YES




Newton-Girard method

Key observation: exactly knowing {Tr(pi)};.”:1 is equivalent to knowing {p;}._;-
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Newton-Girard method

Key observation: exactly knowing {Tr(,oi)};.”:1 is equivalent to knowing {p;}:_;-

Consider the equation having these eigenvalues as root in the form of
[{a-pw=o0.
m=1

The values of Tr(p?) are now the i-th power sum of the roots. Denote the power sum as

P, = ip,; = Tr(p!).
m=1



Newton-Girard method

Simply expanding the terms to get: H(x —p,) = Z (—Dfax"*,
m=1 k=0



Newton-Girard method

Simply expanding the terms to get: H(x p,) = Z (=D ax"k,
m=1 k=0

where
a3 = Z PaPpPys

1 <a<f<y<r

r
Cl,,= I Ipz
=1



Newton-Girard method

The Newton-Girard method states the relationship between
the elementary symmetric polynomials and the power sums recursively.

I % |
Forallr > k> 1, a, = = Z (-1 a,_P.
i=1



Newton-Girard method

The Newton-Girard method states the relationship between
the elementary symmetric polynomials and the power sums recursively.

I % |
Forallr > k> 1, a, = = Z (- a,_P.

= ~__

Uniquely defined P; = Tr(p')



Newton-Girard method

The Newton-Girard method states the relationship between
the elementary symmetric polynomials and the power sums recursively.

I % |
Forallr > k> 1, a, = = Z (- a,_P.

/S T~

Also unique Uniquely defined P; = Tr(p')



Newton-Girard method

The Newton-Girard method states the relationship between
the elementary symmetric polynomials and the power sums recursively.

I % |
Forallr > k> 1, a, = = Z (- a,_P.

/S T~

Also unique Uniquely defined P; = Tr(p')

Therefore, the set of eigenvalues is uniquely determined

as the roots of the equation H(x —p.).

m=1



Estimation with errors

Unfortunately in real-world situations,

we cannot exactly calculate the trace of powers.
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we cannot exactly calculate the trace of powers.

Next challenge: If the error of estimated power sums P; = Tr(p") is small,

are the roots obtained by the Newton-Girard method close to the eigenvalues of p?
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Estimation with errors

Unfortunately in real-world situations,

we cannot exactly calculate the trace of powers.

Next challenge: If the error of estimated power sums P; = Tr(p") is small,

are the roots obtained by the Newton-Girard method close to the eigenvalues of p?

Answer: NO

Counterexample — Wilkinson’s polynomial

* The location of the roots can be very sensitive to perturbations

in the coefticients of the polynomial



Wilkinson’s polynomial

20

w(x) = H(x — ) =(x— D —=2)(x — 20)

=1

Expanding the polynomial, one finds: w(x) = x?V = 210x" +20615x1% — -



Wilkinson’s polynomial
20
w(x) = H(x — ) =(x— D —=2)(x — 20)
=1

Expanding the polynomial, one finds: w(x) = x?V = 210x" +20615x1% — -
f the coefficient of x!” is decreased from =210 by 27%° to —210.0000001192



Wilkinson’s polynomial
20
w(x) = H(x — ) =(x— D —=2)(x — 20)
=1

Expanding the polynomial, one finds: w(x) = x*° — 210x!” + 20615x!° —
f the coefficient of x!? is decreased from —210 by 2723 t0 —210.0000001192

1.00000 2.00000 3.00000 4.00000 0.00000

. 1 . .0072 9172 20.84691
The 20 roots become: 6.0000 6.99970 8.00727 8.91725 0.8469

10.09527 = 11.79363 = 13.99236 = 16.73074 = 19.50244
0.64350: 1.652337 2.018831 2.812621 1.94033¢




Wilkinson’s polynomial
20
w) = | @i == D= 2)-(x - 20)
=1

Expanding the polynomial, one finds: w(x) = x?V = 210x" +20615x1% — -
f the coefficient of x!” is decreased from =210 by 27%° to —210.0000001192

1.00000 2.00000 3.00000 4.00000 5.00000

. 1 . .0072 9172 20.84691
The 20 roots become: 6.0000 6.99970 8.00727 8.91725 0.8469

10.09527 = 11.79363 = 13.99236 = 16.73074 = 19.50244
0.64350: 1.652337 2.018831 2.812621 1.94033¢

* Some of the roots are greatly displaced, even though the change to the coefticient is tiny
and the original roots seem widely spaced.



Overview

¢ Main results: algorithm, lemmas, theorems, corollaries



Main result: iterative Tr(p') estimation algorithm

[1] Estimate P; = Tr(p") fori = 1,2,..., r, using a constant-depth quantum circuit consisting of
O(i) qubits and O(1) CSWAP operations using multivariate trace estimation, where r is the rank
of p, and denote the estimated value as Q.. - 0y ...,0,




Main result: iterative Tr(p') estimation algorithm

[1] Estimate P; = Tr(p") fori = 1,2,..., r, using a constant-depth quantum circuit consisting of
O(i) qubits and O(1) CSWAP operations using multivariate trace estimation, where r is the rank

of p, and denote the estimated value as Q.. — 0,...,0.
. 0)— H H = A =X
Example (i = 8) 0) - L. o HiH A =—x,
0)— H A=
0) Xt ———o —e H A =—X3
0)— H /ﬁ—lbz
0) Xb:1®b; - H A =4
0N
T TR
.---
- i
-

VD VD



Main result: iterative Tr(p') estimation algorithm

[1] Estimate P; = Tr(p") fori = 1,2,..., r, using a constant-depth quantum circuit consisting of
O(i) qubits and O(1) CSWAP operations using multivariate trace estimation, where r is the rank
of p, and denote the estimated value as Q.. - 0y ...,0,

|
[2] Calculate the elementary symmetric polynomial b; = - Z -D)"%,_,0,,b;=1,1<i<r.

=1 — by,....,b
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Main result: iterative Tr(p') estimation algorithm

[1] Estimate P; = Tr(p") fori = 1,2,..., r, using a constant-depth quantum circuit consisting of
O(i) qubits and O(1) CSWAP operations using multivariate trace estimation, where r is the rank
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|
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Main result: iterative Tr(p') estimation algorithm

[1] Estimate P; = Tr(p") fori = 1,2,..., r, using a constant-depth quantum circuit consisting of
O(i) qubits and O(1) CSWAP operations using multivariate trace estimation, where r is the rank
of p, and denote the estimated value as Q.. - 0y ...,0,

|
[2] Calculate the elementary symmetric polynomial b; = - 2 -D)"%,_,0,,b;=1,1<i<r.

=1 — by,....,b

r

[3] Calculate the estimated value Q. (i > r) by Q. = Z (—l)f_lbei_f ~ Tr(ph).

/=1 ~ Qs

The output of our algorithm Q; guarantees an e-approximate trace of powers Tr(p")



Main result: iterative Tr(p') estimation algorithm

p?l p?z p;®r
; G lized ST f"”‘) Quantum Computation\
X e u > Classical Computation y
Vool !
Ir (p) Tr (pz) oo Ir (pr) Tr (pr+1) Tr (pr+2)

lterative Tr(p") Estimation

lterative Tr(p") Estimation

lterative Tr(p") Estimation



Main result: iterative Tr(p') estimation algorithm

®2 o0 p ®r
[1] Estimate P, = Tr(p") fori = 1,2,...,r, using a constant-depth quantum circuit consisting of
] ; O(i) qubits and O(i) CSWAP operations using multivariate trace estimation, where r is the rank
of p, and denote the estimated value as Q,. - 04 -...,0,

1
[2] Calculate the elementary symmetric polynomial b; = TZ -, ,0,,b;=1,1<i<r.

X Generalized ST bk

[3] Calculate the estimated value Q, (i > r) by Q; = z (-1D)"1b,0,_, ~ Tr(pY).

l - l =1 = Qs

Tr(pf Tr(p?) - Tr(p") Tr(p™! oL

lterative Tr(p") Estimation

lterative Tr(p") Estimation

EEEEEEEEEE

lterative Tr(p') Estimation [ektEEE -



Rank is all you need — Lemma 1

® a,, b, =the elementary symmetric polynomials corresponding to each P; and Q..

e (.is defined as the estimated value of P, = Tr(p') on a quantum device fori < r

otherwise 0, = ) (—1)"'b,0;_,.
=1



Rank is all you need — Lemma 1

® a,, b, =the elementary symmetric polynomials corresponding to each P; and Q..

e (.is defined as the estimated value of P, = Tr(p') on a quantum device fori < r

otherwise 0, = ) (—1)"'b,0;_,.
=1

Lemma 1

k ‘€j
Let t, := b, — a;, then the following holds: |7, | < E :
- J

J=1

where e;=Q;— P;is the error that occurred by the estimation of P, = Tr(p).



Rank is all you need — Lemma 1

® a,, b, =the elementary symmetric polynomials corresponding to each P; and Q..

e (.is defined as the estimated value of P, = Tr(p') on a quantum device fori < r

otherwise 0, = ) (—1)"'b,0;_,.
=1

Lemma 1

k ‘€j
Let t, := b, — a;, then the following holds: |7, | < E :
- J

J=1

where e;=Q;— P;is the error that occurred by the estimation of P, = Tr(p).

Proof. By strong mathematical induction logic.



Rank is all you need — Theorem 1

Theorem 1

Suppose that

.= €. | = P— ] <
=lal =10 -0 2T Inr

holdsfori = 1,2,...,r, where T is defined as:
' (1 = M1 = p!
T:Zpl( pl)( 2 pz)
1 (1 —p)

< kr.

Then the following relation always holds:
e, =P, —Q;| <€
fori=1,2,..., k.



Rank is all you need — Theorem 1

Theorem 1

Suppose that

.= €. | = P— ] <
= lal =180l 2T Inr

holdsfori = 1,2,...,r, where T is defined as:
' (1 = M1 = p!
T: Zpl( pl )( pz)
1 (1 = pp?

< kr.

Then the following relation always holds:
e, =P, —Q;| <€
fori=1,2,..., k.

Proof. By applying Lemma 1 + long calculation with some mathematical trick.



Rank is all you need — Corollary 1

Corollary 1

To estimate Tr(p') for all i < k within an additive error of € and with a success probability of at
least 1 — 8, where § € (0,1), it is necessary to estimate each Tr(p/) for j < r within an additive

error of ¢, as defined in Theorem 1. This can be achieved by using

T, I
Ol —In“rin| —
€2 %)

runs on a constant-depth quantum circuit consisting of 0(j) qubits and @O(j) CSWAP
operations. Here, T is defined in Theorem 1.



Rank is all you need — Corollary 1

Corollary 1

To estimate Tr(p') for all i < k within an additive error of € and with a success probability of at
least 1 — 8, where § € (0,1), it is necessary to estimate each Tr(p/) for j < r within an additive

error of ¢, as defined in Theorem 1. This can be achieved by using

T, I
Ol —In“rin| —
€2 %)

runs on a constant-depth quantum circuit consisting of 0(j) qubits and @O(j) CSWAP
operations. Here, T is defined in Theorem 1.

* Note that T scales from a constant to kr, mainly depending on the largest eigenvalue p; of p.

* If pyisnotclose to 1 (e.g., p; = 0.5),then T = O(1). This implies that if p is far from a pure state,
then T is a constant value.



Rank is all you need — Theorem 2

Extension: Estimating Tr(Mp*), the trace of powers with arbitrary observables M .



Rank is all you need — Theorem 2

Extension: Estimating Tr(Mp"), the trace of powers with arbitrary observables M .

Theorem 2

€ €
Suppose thate ;= eyl =|P.yy— Oyl <—, and e =|e| =|P,— 0, < ,
PP v = L€yl = 1Py — Qi > € = | Q| 2T|M|| . In

holds fori =1,2,...,r, where the operator norm HMH is defined corresponding to the
) Zp,a — pO(1 = p)

0 =) < kr.

oo-norm for vectors ||x|| ., as [|M||, = sup
x#0 HXH

Then the following holds:
‘Gi,M‘ — ‘Pi,M_ Qi,M‘ <€
fori=1,2,....k.



Rank is all you need — Corollary 2

Corollary 2
NM
Suppose there is an efficient decomposition M = 2 a;Py wherea, € Rand P, =0, @ -+ @ 6, are tensor
£=1

NM
products of Pauli operators o, , ..., 0, € {0,,0,,0,1}. The quantity Z |la,| = O(c) is bounded by a constant c.
=1

To estimate Tr(Mp') for all i < k within an additive error of € and with a success probability of at least 1 — 6,

where § € (0,1), it is necessary to estimate each Tr(Mp’) for j < r within an additive error of E M

2

c°N 1

This can be achieved by using O ( 2M In (E)) runs on a constant-depth quantum circuit consisting of 0O())
€

qubits and O(j) CSWAP operations, and estimating each Tr(p’) for j* < r within an additive error of &, by using

€ 0

operations. Here, & o € and T are defined in Theorem 2.

T- 1
© (—2 In’rln (—)) runs on a constant-depth quantum circuit consisting of O(j’) qubits and O(j") CSWAP



(Effective) Rank is all you need — Lemma 2
. ( T2 ( 1 )) f pyis notcloseto 1 (e.g., py = 0.5),then T'= O(1). This implies that if p

= 1n271n is far from a pure state, then T is a constant value.
0

2
c * Our algorithm may perform suboptimally on pure states.



(Effective) Rank is all you need — Lemma 2
. ( T2 ( 1 )) f pyis notcloseto 1 (e.g., py = 0.5),then T'= O(1). This implies that if p

= 1n271n is far from a pure state, then T is a constant value.
0

2
c * Our algorithm may perform suboptimally on pure states.

Definition (Effective rank)

Effective rank with error € is defined as the minimum value r,, which satisfies Zpi >1—€.



(Effective) Rank is all you need — Lemma 2

) i f p;isnot closeto 1 (e.g., p; = 0.5),t
O (Lln rIn ( )) is far from a pure state, then T'is a co
c2

0

nen T = O(1). This implies that if p

nstant value.

* Our algorithm may perform suboptimally on pure states.

Definition (Effective rank)

Effective rank with error € is defined as the minimum value r,, which satisfies Zpl- >1—€.

Lemma 2

For every integer k > 2, the tfollowing holds:

R
i=1 i=1




(Effective) Rank is all you need — Lemma 2

) i f p,;is not close to 1 (e.g., p; = 0.5), t
O (Lln rIn ( )) is far from a pure state, then T'is a co
c2

0

nen T = O(1). This implies that if p

nstant value.

* Our algorithm may perform suboptimally on pure states.

Definition (Effective rank)

Effective rank with error € is defined as the minimum value r,, which satisfies Zpl- >1—€.

Lemma 2

For every integer k > 2, the tfollowing holds:

R
i=1 i=1

Lemma 2 suggests that we only need {Tr(pi)}:e=1

for the estimation.



(Effective) Rank is all you need — Lemma 2

) i f p;isnot closeto 1 (e.g., p; = 0.5),t
O (Lln rIn ( )) is far from a pure state, then T'is a co
c2

0

nen T = O(1). This implies that if p

nstant value.

* Our algorithm may perform suboptimally on pure states.

Definition (Effective rank)

Effective rank with error € is defined as the minimum value r,, which satisfies Zpi >1—€.

Lemma 2

For every integer k > 2, the tfollowing holds:

R
i=1 i=1

Lemma 2 suggests that we only need {Tr(pi)}:e=1

for the estimation.

As the maximum eigenvalue of p approaches 1, the r, decreases!
(Possible to resolve issues with pure states)
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Reduction of required runs

' (1l = N1 = p!
Analyze the behavior of T = Z Pl —p){d —pi) as the eigenvalues of p change.

1 (1 = pp?




Reduction of required runs

' (1l = N1 = p!
Analyze the behavior of T = Z Pl —p){d —pi) as the eigenvalues of p change.

1 (1 = pp?

Since we don't know the exact distribution of the eigenvalues of an arbitrary density matrix p,

we consider several typical cases.

0.5 0.25 0.5

v 0.4 v 0-20 v 04
© = 0.15 = 0.3
é 0.3 g ' g .
- (-
V0.2 o 0.10 O 0.2
o o o
.1 W 0.05 I . W 0.1 .
00 -1 1 1 111 000 T 0o ||
o 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7
Index Index Index

Uniform non-maximum Arithmetically decaying Geometrically decaying



Reduction of required runs
.....

r=4 k=16 ‘

60 Randomly generated
. 50 Uniform nonmaximum §
s 40 X Arithmetically decaying O
v 30 {0 Geometrically decaying
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Corollary 1

To estimate Tr(p") for all i < k within an additive error of € and with a success probability of at
least 1 — §, where § € (0,1), it is necessary to estimate each Tr(p’) for j < r within an additive
error of ¢;, as defined in Theorem 1. This can be achieved by using

T? 1
O —In?rIn( —
€2 )

runs on a constant-depth quantum circuit consisting of O(j) qubits and O(j) CSWAP
operations. Here, T is defined in Theorem 1.
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To estimate Tr(p") for all i < k within an additive error of € and with a success probability of at
least 1 — §, where § € (0,1), it is necessary to estimate each Tr(p’) for j < r within an additive
error of ¢;, as defined in Theorem 1. This can be achieved by using
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runs on a constant-depth quantum circuit consisting of O(j) qubits and O(j) CSWAP
operations. Here, T is defined in Theorem 1.
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Applications

Quantum Gibbs states

Variational quantum Gibbs
state preparation with a
truncated Taylor series

[Phys. Rev. Applied 16, 054035 (2021)]
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Virtual distillation for
quantum error mitigation

[Phys. Rev.X 11,041036 (2021)]

3 —
| | = state preparation gate
'%_ = diagonalizing gate

O~ = initialized qubit

-1 = measurement in z basis
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Calculating the nonlinear functions of quantum state

Let p be a quantum state with rank r.

Suppose there exist € > 0 and a slowly-growing function C (as a function of m)
k

suchthat g : R - R is approximated by a degree m polynomial f(x) = Z C X
k=0

on the interval [0,1], in the sense that sup |g(x) — f(x)] < — and 2 e, | < C.
x€(0,1]



Calculating the nonlinear functions of quantum state

Then estimating Tr(g(p)) within an € additive error and
with a success probability of at least 1 — o, where 6 € (0,1) requires



Calculating the nonlinear functions of quantum state

Then estimating Tr(g(p)) within an € additive error and
with a success probability of at least 1 — o, where 6 € (0,1) requires

T°C°r? I
O _n2rIn ( — copies of p and
€2 0




Calculating the nonlinear functions of quantum state

Then estimating Tr(g(p)) within an € additive error and
with a success probability of at least 1 — o, where 6 € (0,1) requires

T°C°r? I
O _n2rIn ( — copies of p and
€2 0

T°C*r , 1 L
O > In“rIn = runs on a constant-depth quantum circuit
€




Calculating the nonlinear functions of quantum state

Then estimating Tr(g(p)) within an € additive error and
with a success probability of at least 1 — o, where 6 € (0,1) requires

T*C*r* 1
O _n2rIn ( — copies of p and
€2 0

T°C*r , 1 L
0, > In“rIn = runs on a constant-depth quantum circuit
€

consisting of O(r) qubits and O(r) CSWAP operations.
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Calculating the nonlinear functions of quantum state

, C’m? 1 | C’m 1
Previous: 0 log | — copies of pand O log | — runs
€2 0 €2 0

on a circuit consisted of O(1) depth, O(m) qubits and O(m) CSWAP operations.

Typically, m > r,
so our enhanced theorem offers advantages for estimating g(p) .

r=C*r* I | T=C*r _, I
Ours: 0 In“rin [ — copies of pand O In“rin [ — runs
€2 0 €2 0

on a circuit consisted of O(1) depth, O(r) qubits and O(r) CSWAP operations.

When g(x) = e”*, C becomes e!’!. We can efficiently estimate Tr(e”?) which has
applications in thermodynamics and the density exponentiation algorithm.



Applications

Quantum Gibbs states

Variational quantum Gibbs
state preparation with a
truncated Taylor series

[Phys. Rev. Applied 16, 054035 (2021)]
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Quantum Gibbs state preparation

k
The truncated Taylor series S, (p) = Z Tr ((p — I)kp)

i=1
is used as the cost function for variational quantum Gibbs state preparation.

't is shown that the fidelity F (,0(90),,0(;) between the optimized state p(6,) and the

—

2
Gibbs state p; is bounded by F(p(6,), ps) = 1 _\ 9 (,Be n k+1”1 (1 — A)k+1)

where [ is the inverse temperature of the system,

|
and A is a constant that satisfies —A In(A) < Ca 1 (1 = AL
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Quantum Gibbs state preparation

By using the inequality D(p(6,), ps;) < \/1 — F (p (90)910(;)» to achieve

T(p(@o),pG) < e, weneedtosetk=0O(-), where T isthe trace distance.

r
Previous: k = 0 <—4> qubits and CSWAP operations are needed.
€

' Significantly reduces the number of qubits and CSWAP operations.

* Independent of the desired error bound €.

Ours: k = O (r) qubits and CSWAP operations are needed.



Applications

Quantum error mitigation

Virtual distillation for
quantum error mitigation

[Phys. Rev.X 11,041036 (2021)]
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Quantum error mitigation

The expected value of a Hermitian operator M is given by (M) = Tr(M | y){y|).
Due to noise, this value becomes (M)nhq5ise = Tr(Mp) # (M).

Virtual distillation protocol offers a method to address this issue.

The protocol involves using collective measurements of k copies

of the mixed state p to suppress incoherent errors.

k
. . . w _ 1r(Mp”)
This approach approximates the error-free expectation value (M)W = ———,
vd - Tr(ph)

where k denotes the number of copies used.
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Quantum error mitigation

Corollary 1

To estimate Tr(p") for all i < k within an additive error of € and with a success probability of at
least 1 — §, where § € (0,1), it is necessary to estimate each Tr(p’) for j < r within an additive
error of ¢, as defined in Theorem 1. This can be achieved by using

T 1
Ol —In“rin| —
€2 o

runs on a constant-depth quantum circuit consisting of O(j) qubits and O(j) CSWAP
operations. Here, T is defined in Theorem 1.




(M)

(k)
va

Quantum error mitigation

- Tr(Mp")

Tr(p")

Corollary 2
NM

Suppose there is an efficient decomposition M = Z a;P, where a, € Rand P, =0, ® -+ ® 0, are tensor
£=1

NM
products of Pauli operators o, ...,0, € {0,,0,,0,,1}. The quantity Z |la,| = O(c) is bounded by a constant c.
£=1

To estimate Tr(Mp") for all i < k within an additive error of € and with a success probability of at least 1 — §,

where 6 € (0,1), it is necessary to estimate each Tr(Mp’) for j < r within an additive error of & M-

2

c“N, 1

This can be achieved by using 0 ( 2M In (3)) runs on a constant-depth quantum circuit consisting of O(j)
€

qubits and O(j) CSWAP operations, and estimating each Tr(p’) for j’ < r within an additive error of &y, by using

T> 1
) (—2 In?r1n (g)) runs on a constant-depth quantum circuit consisting of O(j’) qubits and O(j") CSWAP
€

operations. Here, €;,, € and T are defined in Theorem 2.

J

Corollary 1

To estimate Tr(p’) for all i < k within an additive error of € and with a success probability of at
least 1 — §, where § € (0,1), it is necessary to estimate each Tr(p’) for j < r within an additive
error of ¢, as defined in Theorem 1. This can be achieved by using

T? 1
6| —1In?rln (—
€2 o

runs on a constant-depth quantum circuit consisting of O(j) qubits and O(j) CSWAP
operations. Here, T is defined in Theorem 1.




Overview

® Trace of powers & Literature review

® Mathematical intuitions

® Main results: algorithm, lemmas, theorems, corollaries
® Numerical simulations

® Applications

® Concluding remarks



Concluding remarks

Our main contribution lies in proving that the error increases linearly at most
when applying the Newton-Girard method with a recursive strategy.

We also generalize the result to traces of powers with observables M, which are
represented as Tr(Mp*) .

Our work can enhance any previous algorithms, including Tr(p*) and/or Tr(Mp*) .

We can estimate the trace of powers with O(1)-depth, O(r)-width, and only O(r)
-CSWAP operations.

Our method also provides advantages in copy complexity when estimating the
trace of large powers with low-rank states or sufficiently mixed states.



Future work

® |t remains open for future work to find more applications that can take advantage
of our work.

® GGeneralizing this result to multivariate trace estimation, or even Tr(p*c’), can open
up more possibilities, such as calculating functions that satisfy the data-processing
inequality under unital guantum channels, which can be an alternative tool for

distance measures.

® Tightening the bounds on Theorems 1 and 2 is an interesting future research
topic.

® More about the effectiveness of our “rank is all you need” scheme.




Thank you for listening!
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